
МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ
ЛЬВІВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ВЕТЕРИНАРНОЇ

МЕДИЦИНИ ТА БІОТЕХНОЛОГІЙ ІМ. С.З.ГЖИЦЬКОГО

ФАКУЛЬТЕТ МЕХАНІКИ, ЕНЕРГЕТИКИ

ТА ІНФОРМАЦІЙНИХ ТЕХНОЛОГІЙ

КАФЕДРА ІНФОРМАЦІЙНИХ ТЕХНОЛОГІЙ

КВАЛІФІКАЦІЙНА РОБОТА
другого (магістерського) рівня вищої освіти

на тему: “Розробка системи керування автономним мобільним

роботом на основі комп’ютерного зору”

Виконав: студент гр. Іт-62

Спеціальності 126 «Інформаційні системи та

технології»__________________________________

 (шифр і назва)

 Люліч Петро Іванович ____
 (Прізвище та ініціали)

Керівник: ____к.т.н., доц. Лиса О.В.
(Прізвище та ініціали)

Рецензенти: д.т.н., проф. Власовець В.М.
 (Прізвище та ініціали)

ЛЬВІВ-2025

2

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

ЛЬВІВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ВЕТЕРИНАРНОЇ МЕДИЦИНИ

ТА БІОТЕХНОЛОГІЙ ІМ. С.З.ГЖИЦЬКОГО

ФАКУЛЬТЕТ МЕХАНІКИ, ЕНЕРГЕТИКИ ТА ІНФОРМАЦІЙНИХ ТЕХНОЛОГІЙ

КАФЕДРА ІНФОРМАЦІЙНИХ ТЕХНОЛОГІЙ

Другий (магістерський) рівень вищої освіти

Спеціальність 126 «Інформаційні системи та технології»

 “ЗАТВЕРДЖУЮ”
Завідувач кафедри_______________

д.т.н., проф. А.М. Тригуба

“____”___________2025 р.

ЗАВДАННЯ
на кваліфікаційну роботу студенту

__

1. Тема роботи: ___

__

Керівник роботи Лиса Ольга Володимирівна, к.т.н., доцент.

Затверджені наказом по університету від 28.02 2025 року № 140 /к-с.

2. Строк подання студентом роботи 05.12.2025 р.

3. Вихідні дані до роботи: _характеристики сенсорів, SLAM; ORB-SLAM;

конфігураційні файли ROS 2; Python, методи глибинного розпізнавання об’єктів

YOLOv8_______________

4. Зміст розрахунково-пояснювальної записки (перелік питань, які необхідно

розробити)

Вступ.

1. Аналіз предметної області та завдання кваліфікаційної роботи.

2. Постановка задачі та проектування системи керування.

3. Реалізація алгоритмів комп’ютерного зору та керування.

4. Охорона праці та безпека у надзвичайних ситуаціях.

5. Визначення ефективності від впровадження інформаційної системи керування

автономним мобільним роботом.

Висновки та пропозиції.

Список використаної літератури

Люліч Петро Іванович

 «Розробка системи керування автономним мобільним роботом

на основі комп’ютерного зору»

3

5. Перелік ілюстраційного матеріалу (з точним зазначенням обов’язкових слайдів):

Порівняння класичних та нейромережевих методів комп’ютерного зору;

Узагальнена схема роботи системи керування роботом на основі комп’ютерного

зору; Архітектура системи керування автономним мобільним роботом; Блок-схема

сенсорної підсистеми для комп’ютерного зору в автономному мобільному роботі;

Потоки даних у системі керування автономним роботом; Блок-схема постановки

задачі розпізнавання та обробки зображень; Етапи обробки зображень у системі

керування автономним мобільним роботом; Програмна реалізація; Основні

результати оцінювання ефективності системи.

6. Консультанти з розділів:

Розділ
Прізвище, ініціали та посада

консультанта

Підпис, дата

завдання

видав

завдання

прийняв

1, 2, 3, 5 Лиса О.В., доцент кафедри інформаційних технологій

4
Городецький І.М., доцент кафедри інженерної

механіки

7. Дата видачі завдання 1 березня 2025р.

КАЛЕНДАРНИЙ ПЛАН

№

з/п
Назва етапів кваліфікаційної роботи

Строк

виконання

етапів роботи

Приміт-

ка

1 Написання першого розділу
01.03.25-

04.05.25

2
Виконання другого розділу та аркушів

ілюстраційного матеріалу до нього

05.05.25-

14.07.25

3.
Виконання третього розділу та аркушів

ілюстраційного матеріалу до нього

15.07.25-

24.09.25

4.
Написання розділу «Охорона праці та безпека у

надзвичайних ситуаціях»

25.09.25-

10.10.25

5. Оцінення ефективності запропонованої системи
11.10.25-

31.10.25

6.
Завершення оформлення розрахунково-

пояснювальної записки та презентації

01.11.25-

30.11.25

7. Завершення роботи в цілому
01.12.25-

05.12.25

Студент ________________ Люліч П.І.
 (підпис)

Керівник роботи ________________ Лиса О.В.
 (підпис)

4

УДК 004.896:004.932:621.865

Розробка системи керування автономним мобільним роботом на основі

комп’ютерного зору. Люліч П.І. Кафедра інформаційних технологій – Львів,

ЛНУВМБ ім. С.З.Ґжицького, 2025. Кваліфікаційна робота: 79 с. текст. част., 4 рис.,

18 табл., 10 арк. ілюстраційного матеріалу, 26 джерел.

У роботі досліджено підходи до створення системи керування автономним

мобільним роботом на основі методів комп’ютерного зору. У першому розділі

розглянуто класифікацію автономних роботів, особливості їх керування та роль

комп’ютерного зору у задачах орієнтації, навігації та розпізнавання об’єктів.

Наведено огляд алгоритмів обробки зображень, сучасних робототехнічних

платформ і визначено завдання, які вирішує дана робота. У другому розділі

сформульовано задачу керування автономним мобільним роботом, описано

архітектуру розроблюваної системи, що включає вибір апаратних засобів, датчиків

і камер. Побудовано модель навколишнього середовища та поставлено задачу

розпізнавання візуальних даних, на основі яких здійснюється прийняття рішень про

рух робота. У третьому розділі наведено реалізацію алгоритмів комп’ютерного

зору, включаючи передобробку зображень, виділення ознак, розпізнавання об’єктів

та визначення положення робота. Представлено розробку SLAM-алгоритму на

основі візуальних даних, методи планування траєкторій та інтеграцію модулів

комп’ютерного зору з підсистемою керування рухом. Описано програмну

реалізацію, тестування та оцінку точності і швидкодії системи. У четвертому

розділі розглянуто питання охорони праці та безпеки у надзвичайних ситуаціях. У

п’ятому розділі оцінено економічну ефективність впровадження розробленої

інформаційної системи. Результатом роботи є побудова повноцінної системи

керування автономним мобільним роботом, що здатна орієнтуватися в просторі та

приймати рішення на основі аналізу зображень у реальному часі.

Ключові слова: автономний мобільний робот; комп’ютерний зір; обробка

зображень; локалізація; навігація; SLAM; ORB-SLAM; планування траєкторії;

машинне навчання; системи керування; ROS 2; сенсорні системи.

5

ЗМІСТ

1.

ВСТУП

АНАЛІЗ ПРЕДМЕТНОЇ ОБЛАСТІ ТА ЗАВДАННЯ

КВАЛІФІКАЦІЙНОЇ РОБОТИ

7

8

 1.1. Автономні мобільні роботи: загальні поняття, класифікація 8

 1.2. Методи керування автономними роботами 11

 1.3. Основи комп’ютерного зору у робототехніці 14

 1.4. Огляд алгоритмів обробки зображень для орієнтації та навігації 17

 1.5. Аналіз сучасних систем керування роботами на основі

комп’ютерного зору

21

 1.6. Вибір платформи та апаратних засобів для розробки системи 27

 1.7. Завдання кваліфікаційної роботи 29

2. ПОСТАНОВКА ЗАДАЧІ ТА ПРОЕКТУВАННЯ СИСТЕМИ

КЕРУВАННЯ

30

 2.1. Формулювання задачі керування автономним мобільним

роботом

30

 2.2. Архітектура системи: апаратний та програмний компоненти 33

 2.3. Вибір сенсорів і камер для комп’ютерного зору 39

 2.4. Розробка моделі навколишнього середовища 44

 2.5. Постановка задачі розпізнавання та обробки зображень 46

 2.6. Визначення методів прийняття рішень на основі обробки

візуальних даних

52

3. РЕАЛІЗАЦІЯ АЛГОРИТМІВ КОМП’ЮТЕРНОГО ЗОРУ ТА

КЕРУВАННЯ

54

 3.1. Обробка вхідних зображень: передобробка, фільтрація 54

 3.2. Виділення ознак і розпізнавання об’єктів 56

 3.3. Визначення положення та орієнтації робота за допомогою зору 59

 3.4. Розробка алгоритму локалізації і картографування (SLAM) з

використанням візуальних даних

62

6

 3.5. Алгоритми планування траєкторії і ухвалення рішень 65

 3.6. Інтеграція модуля комп’ютерного зору з системою керування

рухом

67

 3.7. Програмна реалізація 69

 3.8. Тестування, налаштування та оцінка ефективності системи 72

4. ОХОРОНА ПРАЦІ ТА БЕЗПЕКА У НАДЗВИЧАЙНИХ

СИТУАЦІЯХ

77

 4.1. Аналіз небезпечних та шкідливих виробничих чинників під час

роботи з комп’ютерною технікою

77

 4.2. Моделювання процесу виникнення травм та аварій 78

 4.3. Розробка заходів щодо безпеки у надзвичайних ситуаціях 80

5. ВИЗНАЧЕННЯ ЕФЕКТИВНОСТІ ВІД ВПРОВАДЖЕННЯ

ІНФОРМАЦІЙНОЇ СИСТЕМИ КЕРУВАННЯ АВТОНОМНИМ

МОБІЛЬНИМ РОБОТОМ

 82

 ВИСНОВКИ І ПРОПОЗИЦІЇ 85

 СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ 86

 ДОДАТКИ 88

7

ВСТУП

У XXI столітті автономні робототехнічні системи відіграють ключову роль у

цифровій трансформації суспільства. Згідно з прогнозом International Federation of

Robotics (IFR, 2023), у світі налічується понад 3,5 млн промислових роботів, а ринок

сервісної робототехніки зростає щорічно на 20–25 %. Особливий інтерес

становлять мобільні автономні роботи, які здатні функціонувати у невідомому

середовищі, ухвалювати рішення без безпосереднього втручання людини та

виконувати завдання, небезпечні або рутинні для оператора.

Одним із найважливіших напрямів розвитку робототехніки є інтеграція

комп’ютерного зору – технології, що дозволяє машинам «бачити» і аналізувати

навколишнє середовище. Завдяки сучасним методам штучного інтелекту,

машинного навчання та глибинних нейронних мереж досягнуто значного прогресу

у сфері розпізнавання образів, навігації та автоматичного керування. Проте

залишається низка проблем, серед яких: підвищення точності локалізації у

складних умовах освітлення, зменшення обчислювальних витрат алгоритмів,

інтеграція даних з різних сенсорів та забезпечення стійкості роботи у динамічних

середовищах.

Таким чином, дослідження у напрямку створення системи керування

автономним мобільним роботом на основі комп’ютерного зору є актуальним і має

як наукове, так і практичне значення.

Мета роботи – розробка системи керування автономним мобільним роботом,

що використовує алгоритми комп’ютерного зору для орієнтації, навігації та

ухвалення рішень у реальному середовищі.

Об’єкт дослідження – процес керування автономним мобільним роботом.

Предмет дослідження – алгоритми комп’ютерного зору та методи їх

інтеграції з системами навігації і керування рухом автономних роботів.

Наукова новизна роботи полягає у розробці інтегрованої системи керування

мобільним роботом, що базується на поєднанні алгоритмів комп’ютерного зору та

методів навігації.

8

РОЗДІЛ 1.

АНАЛІЗ ПРЕДМЕТНОЇ ОБЛАСТІ ТА ЗАВДАННЯ КВАЛІФІКАЦІЙНОЇ

РОБОТИ

1.1. Автономні мобільні роботи: загальні поняття, класифікація

Автономні мобільні роботи (АМР) є однією з найважливіших підсистем

сучасної робототехніки. Їхня ключова особливість полягає у здатності здійснювати

переміщення у просторі та виконувати завдання без безпосереднього управління

людиною. На відміну від стаціонарних роботів, що функціонують у фіксованому

робочому середовищі (наприклад, промислові маніпулятори на конвеєрних лініях),

автономні мобільні роботи характеризуються високим ступенем свободи,

потребою в адаптації до динамічних умов і здатністю до самостійного прийняття

рішень.

Поняття «автономія» в робототехніці означає рівень незалежності системи

від оператора. Чим вищий рівень автономності, тим менше втручання людини у

процес функціонування робота. У науковій літературі автономність часто

визначають як сукупність властивостей, що забезпечують здатність робота

орієнтуватися у навколишньому середовищі; будувати модель простору та

власного положення; ухвалювати рішення щодо маршруту руху; взаємодіяти з

об’єктами та перешкодами;виконувати завдання у невизначених чи змінних

умовах.

Сучасні АМР є прикладом кіберфізичних систем, що поєднують сенсори,

виконавчі механізми, програмні алгоритми, системи керування та засоби

обчислювального інтелекту. Вони можуть працювати в широкому спектрі

застосувань: від логістики на складах до військових розробок, від медичних

сервісів до дослідницьких місій у космосі.

Основні характеристики автономних мобільних роботів. Мобільність –

здатність пересуватися у просторі (по землі, у повітрі, на воді або під водою).

Сенсорне забезпечення – наявність систем сприйняття (лідар, камери,

9

ультразвукові й інфрачервоні сенсори, GPS, інерційні вимірювальні модулі).

Автономність – здатність діяти без безпосереднього контролю оператора протягом

визначеного часу або виконання завдання. Інтелектуальність – використання

алгоритмів штучного інтелекту й комп’ютерного зору для аналізу середовища та

ухвалення рішень. Адаптивність – можливість змінювати стратегію поведінки

залежно від зовнішніх умов.

Важливим етапом вивчення автономних роботів є їх класифікація, яка

дозволяє систематизувати існуючі підходи до побудови таких систем. Класифікація

здійснюється за різними ознаками: середовище функціонування, спосіб

пересування, рівень автономності, цільове призначення та інтелектуальні

можливості. Класифікація автономних мобільних роботів подана у таблиці 1.1.

Таблиця 1.1

Класифікація автономних мобільних роботів

Ознака

класифікації
Категорії Характеристика

Середовище

функціонува

ння

Наземні
Використовуються на суші; приклади – транспортні

роботи, склади, сервісні системи.

Повітряні (дрони,

БПЛА)

Маневрені роботи для спостереження, моніторингу,

доставки.

Водні (надводні та

підводні)

Виконують дослідження, військові та рятувальні

місії.

Спосіб

пересування

Колісні
Простота конструкції, висока швидкість на рівних

поверхнях.

Гусеничні
Стійкі до нерівностей, застосовуються у військових

та рятувальних операціях.

Крокуючі (гуманоїдні,

багатоногі)

Можливість руху по складному рельєфу,

наближеність до біомеханіки.

Літаючі Виконують політ у тривимірному просторі.

Плаваючі
Призначені для руху по водній поверхні або під

водою.

Рівень

автоном

ності

Напівавтономні
Виконують частину завдань самостійно, але

потребують контролю оператора.

Повністю автономні
Приймають рішення без втручання людини, мають

вбудовану систему ШІ.

Цільове

призначення

Побутові Прибирання (роботи-пилососи), доставка, догляд.

Промислові
Автоматизація виробництва, складів,

транспортування.

Військові Розвідка, бойова підтримка, логістика.

10

Ознака

класифікації
Категорії Характеристика

Медичні Хірургія, реабілітація, догляд за пацієнтами.

Науково-дослідні Експедиції, дослідження небезпечних зон, космосу.

Інтелектуал

ьні

можливості

Реактивні
Працюють на основі правил і сенсорних даних у

режимі реального часу.

Плануючі
Використовують алгоритми планування маршрутів

та оптимізації завдань.

Навчаючі
Здатні до машинного навчання, адаптуються до

нових умов.

Автономні мобільні роботи охоплюють широкий спектр систем - від простих

побутових пристроїв до складних військових чи науково-дослідних комплексів. Їх

класифікація дозволяє визначити ключові характеристики кожного типу та

сформувати підхід до вибору архітектури системи керування.

Бачимо п’ять основних гілок класифікації з їхніми підкатегоріями, що робить

структуру більш зрозумілою для аналізу. та демонструє, що всі сучасні роботи

можуть бути описані через п’ять ключових напрямів класифікації:

1. Середовище функціонування. Кожна категорія орієнтована на

специфічні завдання: наземні роботи забезпечують логістику, транспортування та

сервісні функції у міському або виробничому середовищі; повітряні роботи (дрони,

БПЛА) широко використовуються для моніторингу, картографування, доставки;

водні роботи застосовуються для підводних досліджень, військових місій та

екологічного моніторингу.

2. Спосіб пересування. Цей критерій визначає конструктивні особливості

руху робота: колісні та гусеничні системи домінують у промисловості й логістиці,

крокуючі роботи орієнтовані на складний рельєф, а літаючі та плаваючі - на

простори з тривимірними траєкторіями руху.

3. Рівень автономності. Роботи можуть бути напівавтономними (з

частковим контролем людини) та повністю автономними (із власними

алгоритмами прийняття рішень на основі штучного інтелекту). Цей поділ

підкреслює ступінь розвитку системи керування.

4. Цільове призначення. Виділяють кілька груп роботів залежно від сфери

застосування: побутові (роботи-пилососи, помічники); промислові (автоматизовані

11

візки, маніпулятори на колесах); військові (розвідувальні, ударні, транспортні);

медичні (реабілітаційні, хірургічні); науково-дослідні (космічні, підводні,

геологічні експедиції).

5. Інтелектуальні можливості. За цим критерієм роботи поділяються на

реактивні (швидко реагують на зміни середовища без складного аналізу), плануючі

(будують маршрути й оптимізують завдання) та навчаючі (використовують методи

машинного навчання для адаптації до нових умов).

Таблиця демонструє багатовимірність класифікації: один і той самий робот

може належати до кількох категорій одночасно. Наприклад, дрон для моніторингу

є повітряним, літаючим, повністю автономним, з науково-дослідним або

промисловим призначенням та може належати до класу плануючих або навчаючих

роботів. Таблиця не лише структурує існуючі типи автономних роботів, а й слугує

основою для подальшого вибору архітектури системи керування.

1.2. Методи керування автономними роботами

Ефективне функціонування автономних мобільних роботів значною мірою

залежить від застосованих методів керування. Вибір методів визначається як

середовищем роботи робота, так і завданнями, які він виконує. Основними

вимогами до сучасних систем керування є: забезпечення стійкості й надійності

роботи; здатність до адаптації в умовах невизначеності та динамічно змінюваного

середовища; оптимізація руху та енергоспоживання; здатність інтегруватися з

системами штучного інтелекту для прийняття рішень. У науковій літературі методи

керування автономними роботами прийнято класифікувати за принципом

побудови системи керування та рівнем «інтелектуальності» алгоритмів. Виділяють

такі основні групи:

1. Класичні (детерміновані) методи керування базуються на використанні

традиційної теорії автоматичного керування. Вони добре працюють у відомих і

відносно простих середовищах, наприклад, у виробничих лініях чи на автономних

транспортних засобах із передбачуваними умовами руху. Основні приклади:

12

 PID-регулювання (Proportional–Integral–Derivative Control) використовується

для стабілізації швидкості, положення або траєкторії руху робота. Перевага

– простота реалізації, недолік – слабка ефективність у складному та змінному

середовищі.

 Оптимальне керування (LQR, LQG) застосовується, коли модель системи

відома, а метою є мінімізація витрат (наприклад, енергії чи відхилення від

траєкторії).

 Методи стійкості Ляпунова використовуються для забезпечення стійкості

системи навіть за зовнішніх збурень.

2. Реактивні методи керування базуються на безпосередній реакції робота на

зміни середовища без складного планування. Реактивні методи забезпечують

високу швидкість прийняття рішень, але часто страждають від проблеми локальних

мінімумів та відсутності глобального планування. Приклади:

 Алгоритми уникнення перешкод (Bug, Vector Field Histogram). Робот

приймає локальні рішення щодо обходу об’єктів.

 Методи штучних потенційних полів. Перешкоди створюють

«відштовхувальне» поле, а ціль – «притягувальне». Робот рухається у

напрямку сумарного вектора сил.

 Поведенче керування (Behavior-Based Control). Система складається з набору

простих поведінок (рух вперед, уникнення перешкоди, досягнення цілі), які

активуються залежно від сенсорних даних.

3. Планувальні методи керування орієнтовані на побудову траєкторії руху

робота в просторі:

 Графові методи (Dijkstra, A) використовуються для пошуку найкоротшого

шляху між початковою та кінцевою точками у відомому середовищі.

 Ймовірнісні методи (PRM – Probabilistic Roadmap, RRT – Rapidly-exploring

Random Tree) дозволяють планувати рух у складних та частково невідомих

середовищах.

13

 Методи оптимального планування (Model Predictive Control – MPC)

використовують прогноз майбутніх станів системи для визначення

оптимальних керуючих дій у режимі реального часу.

Планувальні методи більш ресурсоємні, ніж реактивні, проте забезпечують

глобальну оптимізацію шляху.

4. Інтелектуальні методи керування засновані на штучному інтелекті та

машинному навчанні:

 Нейронні мережі використовуються для розпізнавання образів, керування

рухом і адаптації до складних умов.

 Методи глибинного навчання дають можливість інтегрувати комп’ютерний

зір для сприйняття навколишнього середовища.

 Підкріплювальне навчання (Reinforcement Learning). Робот навчається через

взаємодію з середовищем, отримуючи винагороди за правильні дії.

 Еволюційні алгоритми застосовуються для оптимізації траєкторій і

параметрів керування.

Методи забезпечують здатність робота адаптуватися до непередбачуваних

змін середовища, проте вимагають значних обчислювальних ресурсів.

5. Гібридні методи керування полягають у поєднанні класичних і

інтелектуальних підходів. Наприклад: реактивні методи застосовуються для

уникнення перешкод у режимі реального часу; планувальні методи забезпечують

побудову глобального маршруту; інтелектуальні методи дозволяють навчатись і

підвищувати ефективність у процесі роботи.

Гібридні системи вважаються найбільш перспективними, оскільки вони

поєднують надійність класичних підходів із гнучкістю методів штучного інтелекту.

Складемо порівняльну таблицю методів керування автономними мобільними

роботами, яка покаже, які методи доцільно застосовувати залежно від умов.

Методи керування автономними мобільними роботами охоплюють широкий

спектр - від простих PID-регуляторів до складних алгоритмів глибинного навчання.

Вибір конкретного підходу залежить від цілей і середовища роботи: у

14

промисловості ефективні класичні та планувальні методи, тоді як для побутових і

дослідницьких роботів переважають інтелектуальні та гібридні системи.

Таблиця 1.2

Порівняння методів керування автономними роботами

Група методів Приклади Переваги Недоліки
Сфери

застосування

Класичні

(детерміновані)

PID-регулятори,

LQR, Ляпуновські

методи

Простота

реалізації,

надійність, добре

вивчена теорія

Погана адаптація

до

невизначеності,

потреба у точній

моделі

Промислові

системи,

транспорт,

стабілізація руху

Реактивні

Bug, Vector Field

Histogram, штучні

потенційні поля

Висока швидкість

реакції, простота

реалізації

Відсутність

глобального

планування,

проблема

локальних

мінімумів

Побутові

роботи, дрони,

мобільні

платформи у

динамічному

середовищі

Планувальні
A*, Dijkstra, PRM,

RRT, MPC

Забезпечують

глобальний опти

мальний маршрут,

здатність працю

вати в складних

середовищах

Великі

обчислювальні

витрати,

складність

реалізації в

реальному часі

Автономний

транспорт,

логістика,

робототехніка у

виробництві

Інтелектуальні

Нейронні мережі,

глибинне навчання,

підкріплювальне

навчання, еволю

ційні алгоритми

Адаптація,

здатність

навчатися,

інтеграція з

комп’ютерним

зором

Високі

обчислювальні

витрати, потреба

у великих даних

Складні

невизначені

середовища,

роботи-

дослідники,

медичні роботи

Гібридні

Поєднання

реактивних,

планувальних і ШІ-

методів

Баланс між

швидкістю та

оптимальністю,

висока надійність,

універсальність

Складність

розробки та

інтеграції різних

підходів

Сучасні

автономні

транспортні

системи,

військові та

дослідницькі

роботи

1.3. Основи комп’ютерного зору у робототехніці

Однією з ключових складових сучасних автономних мобільних роботів є

комп’ютерний зір (Computer Vision, CV) – галузь штучного інтелекту, що дозволяє

машинам отримувати, аналізувати й інтерпретувати інформацію з навколишнього

середовища за допомогою відеокамер, сенсорів глибини та інших оптичних

15

пристроїв. У контексті робототехніки комп’ютерний зір виступає «очима» робота,

забезпечуючи його здатність орієнтуватися у просторі, розпізнавати об’єкти,

уникати перешкоди та взаємодіяти з динамічними елементами середовища.

Основними функціями CV-систем у роботах є:

 Сприйняття середовища - формування тривимірної моделі навколишнього

простору.

 Розпізнавання об’єктів і сцен - виявлення цілей, людей, дорожніх знаків,

інструментів чи деталей.

 Відстеження руху - моніторинг переміщення об’єктів у полі зору (наприклад,

рух транспортних засобів або пішоходів).

 Навігація та локалізація - використання CV для визначення положення

робота у просторі та побудови карти (SLAM – Simultaneous Localization and

Mapping).

 Жестовий і візуальний інтерфейс - застосування розпізнавання жестів, міміки

або маркерів для взаємодії з користувачем.

Розвиток комп’ютерного зору у робототехніці пройшов кілька етапів – від

класичних алгоритмів обробки зображень до застосування глибинних нейронних

мереж.

1. Класичні алгоритми обробки зображень є швидкими, проте обмежені при

роботі у складному середовищі (методи виділення контурів (Canny, Sobel,

Laplacian); сегментація зображення; аналіз текстур, кольорових моделей (HSV,

LAB)).

2. Геометричні методи - визначення ключових точок і дескрипторів (SIFT,

SURF, ORB); визначення положення та орієнтації об’єктів у просторі;

використання стереозору для відновлення глибини.

3. Методи машинного навчання - використання алгоритмів класифікації (SVM,

Random Forest) для розпізнавання об’єктів; застосування обчислювальних ознак

(HOG – Histogram of Oriented Gradients, LBP – Local Binary Patterns).

4. Методи глибинного навчання - згорткові нейронні мережі (CNN) для детекції

об’єктів; архітектури YOLO, SSD, Faster R-CNN для виявлення та відстеження;

16

сегментаційні мережі (U-Net, Mask R-CNN) для побудови семантичних карт;

системи Visual SLAM із інтеграцією нейронних моделей.

Таблиця 1.3

Порівняння класичних та нейромережевих методів комп’ютерного зору

Критерій порівняння
Класичні методи (традиційна

обробка зображень)

Методи на основі глибинного

навчання (CNN, YOLO, U-Net

тощо)

Принцип роботи

Використання математичних

алгоритмів для аналізу ознак

(контури, текстури, кути, ключові

точки).

Автоматичне навчання ознак із

великих обсягів даних;

ієрархічне представлення

зображень.

Типові алгоритми
Canny, Sobel, SIFT, SURF, ORB,

методи оптичного потоку.

CNN, YOLO, Faster R-CNN, SSD,

U-Net, Mask R-CNN.

Точність
Середня; сильно залежить від

умов освітлення, шумів, фону.

Висока; стійкі до зміни умов,

якщо модель навчена на великій

вибірці.

Вимоги до

обчислювальних

ресурсів

Низькі; можна виконувати на

звичайних мікроконтролерах.

Високі; потребують GPU або

потужних процесорів.

Гнучкість

Погана – кожен алгоритм

розробляється під конкретне

завдання.

Висока – одна архітектура може

бути адаптована до різних задач

(класифікація, сегментація,

SLAM).

Необхідність даних для

навчання

Не потребують великих

навчальних наборів; достатньо

параметрів алгоритму.

Потребують великих датасетів

для тренування моделей.

Швидкість роботи Дуже висока на простих задачах.

Залежить від архітектури; на

GPU може працювати в

реальному часі.

Стійкість до завад (шум,

освітлення, перекриття

об’єктів)

Низька – часто дає помилки.

Висока – моделі можуть

навчитися інваріантності до

шуму.

Сфера застосування

Прості задачі: визначення

контурів, вимірювання, базова

навігація.

Складні задачі: розпізнавання

об’єктів, автопілотування,

медичний аналіз, SLAM.

Таблиця добре підкреслює, що класичні методи лишаються актуальними для

простих і ресурсно-обмежених роботів, тоді як нейромережеві підходи стали

стандартом для високотехнологічних автономних систем.

Для реалізації CV у мобільних роботах використовуються різні сенсори:

 Камери RGB – стандартні камери для захоплення кольорових зображень.

 Стереокамери – забезпечують оцінку глибини.

17

 Камери глибини (RGB-D, наприклад, Microsoft Kinect, Intel RealSense)

використовуються для побудови 3D-моделей середовища.

 Лідари (LiDAR) дає високу точність визначення відстаней, поєднується з CV

для комплексного сприйняття середовища.

 Інфрачервоні та тепловізійні камери застосовуються в умовах недостатнього

освітлення.

Незважаючи на стрімкий розвиток, застосування комп’ютерного зору у

роботах стикається з низкою проблем: велика залежність від умов освітлення та

якості сенсорів; високе обчислювальне навантаження, що вимагає використання

потужних процесорів або графічних прискорювачів; потреба у великих наборах

даних для навчання моделей; складність інтеграції CV із системами керування в

реальному часі.

Комп’ютерний зір у робототехніці є фундаментальною технологією, що

забезпечує автономність, безпеку та інтелектуальність мобільних систем.

Поєднання CV із методами машинного навчання, глибинними нейронними

мережами та сенсорними технологіями дозволяє створювати роботів, здатних

працювати у складних і непередбачуваних середовищах.

1.4. Огляд алгоритмів обробки зображень для орієнтації та навігації

Одним із ключових завдань автономних мобільних роботів є здатність

орієнтуватися у просторі та здійснювати навігацію в середовищі з перешкодами.

Для цього використовуються алгоритми комп’ютерного зору, що дозволяють

аналізувати візуальні дані, отримані з камер або комбінованих сенсорних систем.

Сучасні підходи до візуальної навігації можна умовно поділити на традиційні

алгоритми обробки зображень та методи на основі машинного та глибинного

навчання.

У класичній обробці зображень для автономних роботів застосовуються

різноманітні алгоритми, спрямовані на виділення та аналіз візуальних ознак, які

допомагають системі сприймати навколишнє середовище та орієнтуватися в ньому.

18

Одним із ключових напрямів є виділення контурів і градієнтів, що дозволяє

розпізнавати межі об’єктів і перешкод. Найпоширенішим методом є алгоритм

Canny, який забезпечує точне виявлення контурів навіть за наявності шумів. Поряд

із ним застосовуються оператори Sobel, Prewitt та Laplacian, які аналізують

напрямки різких змін інтенсивності пікселів і використовуються при створенні

карт середовища та структурного опису сцени.

Іншим важливим етапом є виділення ключових точок і дескрипторів, що

забезпечує можливість порівняння зображень і відстеження об’єктів у просторі.

Методи SIFT (Scale-Invariant Feature Transform) та SURF (Speeded-Up Robust

Features) дають змогу знаходити інваріантні до масштабу та повороту ознаки, що

зберігають стабільність навіть при зміні освітлення або кута огляду. Водночас ORB

(Oriented FAST and Rotated BRIEF) є більш швидким та оптимізованим рішенням

для роботів із обмеженими обчислювальними ресурсами, що робить його

популярним у системах реального часу.

Для визначення руху об’єктів у кадрі використовуються методи оптичного

потоку, зокрема Lucas–Kanade та Horn–Schunck. Вони дозволяють оцінювати

напрям і швидкість руху об’єктів, що дає змогу роботу аналізувати власну

швидкість, розпізнавати динамічні перешкоди та прогнозувати траєкторії їх руху.

У задачах тривимірної навігації активно застосовуються методи стереозору,

які базуються на використанні двох або більше камер. Це дає можливість відновити

3D-структуру сцени, визначити глибину та відстань до об’єктів. На основі цих

принципів працює стерео-SLAM, що забезпечує одночасну локалізацію робота й

побудову карти середовища у тривимірному просторі.

Ще одним важливим напрямом є візуальна одометрія (Visual Odometry), яка

визначає переміщення робота шляхом аналізу змін у положенні ключових точок

між послідовними кадрами відеопотоку. Цей метод дозволяє оцінювати траєкторію

руху без використання GPS, що особливо важливо для роботи в закритих або

недоступних для супутникового сигналу середовищах. Отже, класичні алгоритми

обробки зображень формують основу для розпізнавання, локалізації та орієнтації

автономних роботів у реальному світі.

19

Одним із ключових підходів до орієнтації мобільних роботів є SLAM

(Simultaneous Localization and Mapping) - технологія, що дозволяє одночасно

виконувати локалізацію робота та побудову карти навколишнього середовища. Цей

метод став основою для автономного пересування без використання зовнішніх

навігаційних систем, таких як GPS. У класичному варіанті SLAM реалізується

через алгоритми на зразок ORB-SLAM, що базується на дескрипторах ORB, або

PTAM (Parallel Tracking and Mapping), який об’єднує процеси відстеження руху та

побудови карти. Такі системи забезпечують добру точність і стабільність у

відносно простих середовищах.

Сучасний розвиток привів до появи гібридних підходів SLAM, де до

візуальної інформації додаються дані з інших сенсорів, таких як IMU (інерційні

вимірювальні блоки) чи LIDAR. Поєднання цих джерел даних значно підвищує

точність позиціонування, особливо в умовах, коли камера тимчасово втрачає

зображення або перебуває в слабкому освітленні.

Новітнім етапом еволюції стали глибинні методи SLAM, які використовують

згорткові нейронні мережі (CNN) для аналізу сцен, оцінки глибини та локалізації.

Такі моделі, як DeepVO (Visual Odometry на основі CNN) чи DSO (Direct Sparse

Odometry), здатні самостійно навчатися визначати просторове положення робота

на основі послідовності зображень. Це відкриває шлях до побудови більш

автономних і адаптивних систем орієнтації.

Паралельно з розвитком SLAM активно розвиваються методи комп’ютерного

зору, які дають змогу не лише орієнтуватися, а й розпізнавати об’єкти у

навколишньому просторі. Серед них виділяються алгоритми розпізнавання та

класифікації об’єктів - YOLO, Faster R-CNN, SSD, які ідентифікують потенційні

перешкоди та об’єкти маршруту. Семантична сегментація, реалізована у моделях

U-Net, Mask R-CNN, DeepLab, дозволяє поділити сцену на функціональні зони -

наприклад, відокремити дорогу від стін або пішоходів.

Окрему нішу займає енд-ту-енд навігація, коли нейронна мережа напряму

генерує керуючі дії робота на основі даних із камери. Відомим прикладом є

20

NVIDIA PilotNet, яка може самостійно визначати напрям руху транспортного

засобу без явного формування карти чи розпізнавання об’єктів.

Попри значні досягнення, ці методи стикаються з низкою викликів. Робота

алгоритмів часто залежить від умов освітлення, що ускладнює їх використання в

темряві або при різких змінах освітленості. Високі вимоги до обчислювальних

ресурсів змушують використовувати потужні GPU, що не завжди можливо в

мобільних роботах. Додатковою проблемою є узагальненість моделей - навчена

нейромережа не завжди ефективно працює в нових умовах без додаткового

перенавчання. Також важливим є баланс між точністю та швидкодією, оскільки

система має працювати в реальному часі.

Таблиця 1.4

Класифікація алгоритмів орієнтації та навігації на основі зображень

Категорія Основні методи
Приклади

алгоритмів
Переваги Недоліки

Класичні методи

обробки зображень

Виділення

контурів,

градієнтів,

ключових точок;

оптичний потік

Canny, Sobel,

SIFT, SURF,

ORB, Lucas–

Kanade, Horn–

Schunck

Висока

швидкодія, низькі

вимоги до

ресурсів, придатні

для простих

роботів

Низька точність у

складних умовах

(шум, змінне

освітлення)

Візуальна

одометрія (VO)

Визначення

траєкторії руху за

зміною

положення ознак

ORB-VO,

Stereo VO,

RGB-D VO

Не потребує GPS,

добре працює у

закритих

приміщеннях

Накопичення

похибок з часом,

потреба у корекції

SLAM (локалізація

та

картографування)

Одночасне

відстеження

позиції та

побудова карти

середовища

ORB-SLAM,

PTAM, LSD-

SLAM, DSO

Побудова карти в

реальному часі,

можливість

роботи у

невідомому

середовищі

Високі

обчислювальні

витрати, складність

реалізації

Гібридні методи

(візуальні + інші

сенсори)

Поєднання з IMU,

LIDAR, GPS

VIO (Visual-

Inertial

Odometry), V-

SLAM з

LIDAR

Підвищення

точності,

зменшення

похибок

Складність

інтеграції, вартість

обладнання

Методи

глибинного

навчання

Розпізнавання

об’єктів,

семантична

сегментація, енд-

ту-енд навігація

CNN, YOLO,

Faster R-CNN,

U-Net,

DeepVO,

PilotNet

Висока точність,

здатність

працювати у

складних умовах

Великі вимоги до

обчислювальних

ресурсів та даних

для навчання

21

Таблиця 1.4 систематизує основні алгоритми обробки зображень для

орієнтації та навігації автономних мобільних роботів, показує еволюцію методів:

від простих класичних алгоритмів до комплексних систем на основі нейромереж і

SLAM, які сьогодні є основою для автономної навігації.

Подальший розвиток технологій пов’язаний із створенням гібридних систем

зору, які поєднують класичні алгоритми з методами глибинного навчання. Активно

розробляються легковагові архітектури, такі як MobileNet чи EfficientNet, що

дозволяють реалізовувати нейронні мережі навіть на вбудованих платформах.

Важливим напрямом також є інтеграція з іншими сенсорними технологіями -

LIDAR, ультразвуковими та радарними датчиками, що забезпечує більшу

надійність сприйняття середовища.

Отже, сучасні алгоритми орієнтації та навігації на основі зору охоплюють

увесь спектр підходів - від класичних методів виділення ознак до складних

глибинних моделей, здатних до самонавчання. Вибір конкретного методу

визначається вимогами до точності, швидкодії та рівня автономності мобільного

робота, а також умовами його експлуатації.

1.5. Аналіз сучасних систем керування роботами на основі комп’ютерного

зору

Системи керування автономними мобільними роботами дедалі частіше

інтегрують технології комп’ютерного зору як головний інструмент сприйняття

середовища. Завдяки цьому робот здатний не лише сприймати інформацію про

навколишній світ, але й самостійно ухвалювати рішення щодо орієнтації, навігації

та взаємодії з об’єктами. Сучасні підходи до побудови таких систем ґрунтуються

на поєднанні сенсорних технологій, алгоритмів обробки зображень, методів

штучного інтелекту та систем реального часу.

Сучасні системи керування автономними мобільними роботами базуються на

поєднанні різних архітектурних підходів, сенсорних технологій і алгоритмів

комп’ютерного зору. Одним із найпоширеніших є ієрархічний підхід, який

22

передбачає поділ системи на кілька рівнів - сенсорний, когнітивний та виконавчий.

На сенсорному рівні здійснюється збір даних від камер, LIDAR або інших сенсорів;

когнітивний рівень відповідає за аналіз і прийняття рішень, тоді як виконавчий

рівень реалізує керуючі дії, перетворюючи їх у фізичний рух. Такі системи широко

використовуються в промислових і сервісних роботах, де потрібна висока

надійність і чітка ієрархія управління.

Таблиця 1.5

Порівняння підходів у системах керування роботами на основі комп’ютерного

зору

Підхід Приклади застосування Переваги Недоліки

Класичні

алгоритми

комп’ютерного

зору

Виділення контурів (Canny,

Sobel), опис ключових

точок (SIFT, SURF, ORB),

оптичний потік (Lucas–

Kanade, Horn–Schunck)

- Висока швидкодія

- Простота реалізації

- Низькі обчислювальні

витрати

- Працюють навіть на

простих мікроконтролерах

- Чутливість до шумів

- Залежність від

освітлення

- Обмежена

адаптивність

- Не здатні до

самонавчання

Алгоритми

візуальної

навігації (VO,

SLAM)

ORB-SLAM, LSD-SLAM,

DSO, PTAM

- Побудова карти в

реальному часі

- Можливість роботи без

GPS

- Висока точність у

складних середовищах

- Високі

обчислювальні

витрати

- Накопичення

похибок з часом

- Складність

налаштування

Гібридні

системи (з

інтеграцією

сенсорів)

VIO (Visual-Inertial

Odometry), V-SLAM з

LIDAR та GPS

- Висока надійність

- Менше похибок завдяки

корекції даними з інших

сенсорів

- Здатність працювати в

різних умовах

- Висока вартість

обладнання

- Складність

інтеграції

- Великі вимоги до

апаратури

Методи

глибинного

навчання

CNN, YOLO, Faster R-CNN,

U-Net, DeepVO, PilotNet

- Висока точність

розпізнавання

- Стійкість до шумів та

змін освітлення

- Можливість

самонавчання

- Виконання складних

завдань (сегментація,

класифікація,

прогнозування траєкторії)

- Великі

обчислювальні

витрати

- Потреба у великих

наборах даних

- Складність

навчання моделей

- Висока

енергоспоживаність

Іншим підходом є реактивна архітектура, що базується на принципі «стимул–

реакція». У цьому випадку дії робота безпосередньо залежать від поточних

сенсорних сигналів, без складного планування чи аналізу. Такий тип системи

23

ефективний у простих навігаційних задачах - наприклад, під час уникнення

перешкод. Проте через обмеженість у стратегічному плануванні ці системи не

підходять для складних середовищ.

Компромісом між двома підходами є гібридні системи керування, які

поєднують ієрархічний рівень планування з реактивною поведінкою у реальному

часі. Вони здатні одночасно планувати траєкторію руху та оперативно реагувати на

зміни у середовищі. Саме гібридні архітектури сьогодні вважаються найбільш

ефективними в мобільній робототехніці.

Подамо узагальнену таблицю порівняння переваг і недоліків систем

керування роботами на основі комп’ютерного зору.

Типова система керування на основі комп’ютерного зору складається з

кількох основних модулів. Сенсорний модуль включає різні типи камер (RGB,

стерео, RGB-D, тепловізійні), які можуть працювати разом із LIDAR або

інерційними вимірювальними блоками (IMU) для точнішого позиціонування.

Модуль обробки зображень реалізує алгоритми виявлення ознак, сегментації та

розпізнавання об’єктів, використовуючи як класичні методи комп’ютерного зору,

так і нейронні мережі. Модуль прийняття рішень базується на інтелектуальних

алгоритмах - від PID- та MPC-регуляторів до моделей глибинного навчання,

здатних прогнозувати поведінку системи. Завершальним елементом є виконавчий

модуль, який перетворює обчислені команди на конкретні дії - рух коліс,

маніпуляторів або зміни траєкторії.

Узагальнена блок-схема (рис. 1.1) відображає ключові етапи роботи системи

керування автономним мобільним роботом із застосуванням комп’ютерного зору.

В її основу покладено ієрархічний принцип взаємодії сенсорних підсистем,

алгоритмів обробки зображень, модулів розпізнавання та системи прийняття

рішень. На першому рівні розташовані камери та сенсори, що формують первинний

потік даних про навколишнє середовище. Це можуть бути RGB-камери,

стереокамери, камери глибини (наприклад, Intel RealSense) або комбіновані

сенсорні модулі з IMU, LIDAR чи ультразвуковими давачами. Вони забезпечують

базову інформацію для подальшої обробки.

24

Рис.1.1. Узагальнена схема роботи системи керування роботом на основі

комп’ютерного зору.

Другий рівень становлять алгоритми комп’ютерного зору, які виконують

попередню обробку сигналів: фільтрацію шумів, виділення контурів, сегментацію

зображень, аналіз оптичного потоку. Сучасні системи активно застосовують

методи машинного навчання та глибинних нейронних мереж для точного

розпізнавання об’єктів у складних умовах.

Далі формується модуль розпізнавання об’єктів та навігації, який інтегрує

результати обробки зображень і визначає просторове положення робота, наявність

перешкод та доступні траєкторії руху. Тут реалізуються підходи візуальної

одометрії, SLAM (Simultaneous Localization and Mapping) та інші методи

планування руху.

Наступним етапом є система керування роботом. Вона реалізується на основі

вбудованих контролерів (PLC, мікроконтролери або обчислювальні модулі під

управлінням ROS – Robot Operating System). Її завдання полягає у прийнятті рішень

Камери / Сенсори

Алгоритми комп’ютерного зору

(фільтрація, сегментація,

нейронні мережі)

Система керування роботом

(PLC, контролер, ROS)

Виконавчі механізми (приводи,

колеса, маніпулятори)

Модуль розпізнавання об’єктів

та навігації

25

на основі візуальної інформації, формуванні команд управління та забезпеченні

координації дій робота.

Останній рівень становлять виконавчі механізми – колеса, гусениці,

маніпулятори, сервоприводи, що безпосередньо виконують дії у фізичному

середовищі відповідно до команд керування.

Таким чином, взаємодія всіх компонентів забезпечує замкнений цикл

сприйняття, аналізу, прийняття рішення та дії. Саме ця інтеграція визначає сучасні

системи керування роботами на основі комп’ютерного зору як гнучкі,

інтелектуальні та здатні адаптуватися до складних умов.

У практиці сьогодні можна спостерігати різні приклади таких систем.

Автономні транспортні засоби, як-от Tesla Autopilot чи Waymo, використовують

багатокамерні системи разом із SLAM-алгоритмами для побудови карт і

прогнозування руху. Побутові роботи, наприклад пилососи або роботи-доставники,

застосовують камери з оцінкою глибини (Intel RealSense), поєднуючи візуальну

одометрію з семантичною сегментацією. У промисловій автоматизації системи

машинного зору контролюють якість продукції, виконують збирання чи

сортування об’єктів, комбінуючи традиційні алгоритми з нейромережами. У сфері

дослідницьких і рятувальних операцій відомими є рішення Boston Dynamics (Spot),

які використовують SLAM та алгоритми глибинного підкріплення (Deep

Reinforcement Learning) для прийняття рішень у непередбачуваних умовах.

Розвиток технологій визначають кілька ключових тенденцій. Однією з них є

інтеграція систем керування з глибинним навчанням, що дозволяє роботам

інтерпретувати складні сцени за допомогою CNN, RNN чи трансформерів. Також

зростає роль edge-computing, коли обробка даних виконується безпосередньо на

борту робота за допомогою легковагових нейромереж, таких як MobileNet або

EfficientNet. Інша тенденція - створення мультимодальних систем, які поєднують

візуальні, аудіо, тактильні та LIDAR-дані для кращого сприйняття середовища.

Крім того, все більшої популярності набувають хмарні рішення, що забезпечують

колективне навчання груп роботів і централізований аналіз даних. Попри значний

прогрес, сучасні системи керування мають як переваги, так і обмеження. Їх сильні

26

сторони полягають у здатності адаптуватися до невідомого середовища, точно

розпізнавати об’єкти та навчатися у процесі роботи. Водночас проблемами

залишаються високі обчислювальні вимоги, залежність від якості сенсорів і

освітлення, а також складність обробки великого обсягу даних у реальному часі.

Таблиця 1.6

Приклади сучасних систем керування на основі комп’ютерного зору

Система /

Платформа

Галузь

застосування

Технології

комп’ютерного

зору

Основні функції Переваги Недоліки

ROS

(Robot

Operating

System) з

OpenCV

Дослідження,

освітні роботи,

прототипи

OpenCV,

Python, C++,

бібліотеки

машинного

навчання

Детекція

об’єктів, SLAM,

навігація

Відкритий код,

велика спільнота,

гнучкість

Потребує

потужних

обчислень,

складність

інтеграції

NVIDIA

Isaac SDK

Автономні

мобільні

платформи,

робототехнічні

стартапи

Глибокі

нейронні

мережі (CNN),

CUDA,

TensorRT

Обробка відео у

реальному часі,

розпізнавання

об’єктів, SLAM

Висока

продуктивність

GPU, оптимізація

під AI

Висока

вартість

обладнання,

залежність

від GPU

NVIDIA

Boston

Dynamics

(Spot,

Atlas)

Сервісні

роботи,

військові та

промислові

завдання

Візуальна

навігація, 3D

SLAM, CNN

для аналізу

сцен

Автономна

навігація,

уникнення

перешкод,

розпізнавання

оточення

Надійність у

складних умовах,

динамічні

можливості

Висока ціна,

закритість

ПЗ

Google

DeepMind

Robotics

Дослідження

штучного

інтелекту

Глибоке

навчання,

reinforcement

learning,

візуальні CNN

Навчання

роботів новим

діям через зорові

дані

Високий рівень

інтелектуалізації,

самообучення

Складність

переносу з

симуляцій у

реальний

світ

Tesla

Autopilot /

FSD

Автомобільна

промисловість

Багатокамерні

системи, CNN,

3D

реконструкція

сцени

Автономне

керування авто,

розпізнавання

доріг і пішоходів

Високоточні

алгоритми,

машинне

навчання на

великих даних

Потребує

ідеальних

умов, ризики

безпеки

Amazon

Robotics

(Kiva

Systems)

Логістика та

склади

Камери,

комп’ютерний

зір, QR-

навігація

Локалізація і

транспортування

вантажів

Висока

продуктивність,

масштабованість

Обмежене

середовище

застосування

Загалом, розвиток систем керування автономними мобільними роботами

спрямований на створення гібридних архітектур, що об’єднують переваги

класичних алгоритмів навігації та глибинного навчання. Це забезпечує можливість

27

роботи роботів у динамічних і складних умовах, наближаючи їхню поведінку до

рівня людського сприйняття та мислення.

Для кращого розуміння сучасних тенденцій узагальнимо приклади реалізації

комп’ютерного зору у керуванні автономними роботами.

Таким чином, аналіз сучасних систем показує, що використання

комп’ютерного зору у керуванні роботами є критично важливим фактором

розвитку галузі. Відкриті програмні платформи, такі як ROS + OpenCV, сприяють

швидкому прототипуванню, тоді як рішення від NVIDIA чи Boston Dynamics

демонструють комерційний рівень реалізації. У майбутньому можна очікувати

подальшої інтеграції глибоких нейронних мереж та мультисенсорних систем, що

забезпечить ще вищу автономність і надійність роботів.

1.6. Вибір платформи та апаратних засобів для розробки системи

Розробка системи керування автономним мобільним роботом на основі

комп’ютерного зору неможлива без чіткого визначення апаратної та програмної

платформи. Вибір обладнання залежить від низки факторів: вимог до

продуктивності, енергоспоживання, можливості інтеграції сенсорів, сумісності з

бібліотеками комп’ютерного зору, а також від вартості та доступності компонентів.

Важливим є також урахування специфіки завдання: чи йдеться про виробничий

процес, чи про інформаційну систему з великими обсягами даних.

Таблиця 1.7

Порівняння можливих платформ

Платформа /

Приклад
Призначення Переваги Недоліки

Сфера

застосування

Промисловий

контролер

(PLC)
Siemens S7-

1200

Автоматизація

технологічних

процесів

Висока надійність,

сумісність із промис

ловими протоколами

(Profinet, Modbus),

зручне підключення

датчиків і приводів,

довгий життєвий цикл

Вища вартість у

порівнянні з

мікроконтролерами,

обмежені можливості

для обробки «великих

даних»

Керування

обладнанням,

виробничі

процеси

Серверна

платформа

Обробка

великих

обсягів даних,

Висока продуктив

ність, можливість

масштабування,

Висока вартість,

потреба в

Інформаційні

системи,

аналітика,

28

Платформа /

Приклад
Призначення Переваги Недоліки

Сфера

застосування

Intel Xeon,

AMD EPYC

віртуалізація,

аналітика

підтримка

контейнеризації

(Docker, Kubernetes),

надійність

спеціалізованому

обслуговуванні

штучний

інтелект

IoT-пристрої

/ вбудовані

комп’ютери
Raspberry Pi,

NVIDIA Jetson

Локальний

збір і поперед

ня обробка

даних, IoT-

рішення

Низька вартість,

компактність,

можливість виконання

ML-алгоритмів, велика

спільнота розробників

Нижча надійність,

обмежений ресурс

пам’яті та

обчислювальних

потужностей

Розумні

сенсори,

мобільні

системи,

прототипування

Робочі

станції

розробника
Intel Core i7 /

AMD Ryzen 7,

NVIDIA RTX

Розробка,

тестування,

моделювання

та візуалізація

Висока

продуктивність,

можливість

тренування ML/AI

моделей, швидке

відлагодження

Потреба у

регулярному

оновленні апаратури,

енергоспоживання

Розробка та

налагодження

програмного

забезпечення,

дослідження

Окрім обчислювальних платформ, слід врахувати засоби обміну даними:

Ethernet/Profinet – для високошвидкісної промислової комунікації; RS-

485/Modbus/CAN – для взаємодії з датчиками та виконавчими механізмами; Wi-

Fi/5G/LoRaWAN – для IoT та мобільних рішень.

Для забезпечення зручної взаємодії користувача з системою доцільним є

використання: SIMATIC HMI Comfort Panels – для виробничих процесів; SCADA-

систем (WinCC, Ignition) – для централізованого управління; Web-інтерфейсів

(React, Angular, HTML5) – для віддаленого моніторингу.

Порівняння промислових контролерів, серверних платформ, вбудованих

обчислювальних модулів (Raspberry Pi, NVIDIA Jetson) та робочих станцій

показало, що найбільш збалансованим підходом є використання гібридної

архітектури: промисловий контролер для управління обладнанням та

високопродуктивна робоча станція (або вбудований GPU-комп’ютер) для реалізації

алгоритмів комп’ютерного зору та машинного навчання.

Таким чином, проведений аналіз дозволив сформувати комплексне уявлення

про сучасний стан робототехніки та роль комп’ютерного зору в ній; виявити сильні

та слабкі сторони існуючих методів керування та алгоритмів обробки зображень;

обґрунтувати вибір платформи й апаратних засобів для подальшої реалізації

власної системи.

29

1.7. Завдання кваліфікаційної роботи

Для досягнення мети слід вирішити у роботі такі завдання:

1. Проаналізувати сучасні підходи до створення автономних мобільних

роботів та систем комп’ютерного зору.

2. Обґрунтувати вибір апаратної та програмної платформи для реалізації

системи.

3. Розробити архітектуру системи керування мобільним роботом з

інтеграцією модуля комп’ютерного зору.

4. Реалізувати алгоритми обробки зображень для виявлення об’єктів і

перешкод, визначення траєкторії руху.

5. Інтегрувати модуль комп’ютерного зору із системою навігації та

управління рухом робота.

6. Провести експериментальне дослідження роботи системи, оцінити її

точність, швидкодію та ефективність.

7. Розробити рекомендації щодо практичного використання

запропонованої системи та можливих напрямів її вдосконалення.

8. Провести оцінку ефективності роботи системи після впровадження.

9. Розробити заходи стосовно охорони праці та безпеки у надзвичайних

ситуаціях.

30

РОЗДІЛ 2.

 ПОСТАНОВКА ЗАДАЧІ ТА ПРОЕКТУВАННЯ СИСТЕМИ КЕРУВАННЯ

2.1. Формулювання задачі керування автономним мобільним роботом

Сучасні автономні мобільні роботи функціонують у складних, динамічних

середовищах, де традиційних методів керування недостатньо для забезпечення

стабільності та ефективності роботи. Особливістю таких роботів є необхідність

поєднання сприйняття навколишнього середовища, аналізу інформації та

прийняття рішень у реальному часі. Для цього робот має бути обладнаний

сенсорами, системами комп’ютерного зору та програмними алгоритмами, які

дозволяють йому здійснювати орієнтацію та навігацію без втручання людини.

Формулюючи задачу керування автономним мобільним роботом, можна

виділити кілька ключових цілей:

1. Навігація в просторі – робот повинен мати змогу визначати своє

положення відносно оточення, будувати карту середовища (SLAM) та планувати

траєкторію руху.

2. Уникнення перешкод – робот повинен вчасно виявляти стаціонарні та

рухомі об’єкти, прогнозувати їхні траєкторії та змінювати власний маршрут.

3. Цільове пересування – здатність рухатися до заданої точки чи об’єкта,

враховуючи наявність обмежень середовища.

4. Адаптивність – можливість адаптації до змін умов (освітлення, шумів

сенсорів, появи нових перешкод).

5. Енергоефективність – оптимізація траєкторій та режимів руху для

зниження енергоспоживання.

6. Інтерактивність – здатність взаємодіяти з оператором або іншими

роботами через мережеві протоколи чи візуальні команди.

Математично задача керування автономним мобільним роботом може бути

описана як проблема оптимізації. Нехай робот рухається в середовищі, яке можна

подати як множину станів S. Кожен стан описується вектором параметрів:

31

положенням робота (x,y,θ), швидкістю 𝑣, сенсорними спостереженнями Z. Робот

має набір дій A={a1,a2,...,an}, які впливають на його стан. Мета керування – знайти

послідовність дій 𝜋 = {𝑎𝑡}𝑡=0
𝑇 , яка переводить робота зі стартового стану S0 у

кінцевий стан ST, що відповідає досягненню цілі, при цьому мінімізується функція

витрат:

𝐽 = ∑ (𝓌1 ⋅ 𝑑(𝑆𝑡 , 𝐺𝑜𝑎𝑙) +𝓌2 ⋅ 𝐸𝑡 +𝓌3 ⋅ 𝐶𝑡)
𝑇
𝑡=0 (2.1)

де: d(St,Goal) – відстань до цілі у момент часу t;

Et – витрати енергії;

Ct – штраф за близькість до перешкод;

w1,w2,w3 – вагові коефіцієнти, що визначають пріоритети.

Таким чином, задача керування зводиться до оптимального планування

траєкторії та прийняття рішень у реальному часі, що враховує обмеження та

непередбачуваність середовища.

При постановці задачі важливо врахувати низку обмежень:

 Обмеженість сенсорних даних - камера чи інші сенсори можуть мати

зони «мертвих зон», шуми, обмежений кут огляду.

 Фізичні характеристики робота - максимальна швидкість, кутові

прискорення, потужність двигунів.

 Обчислювальні ресурси - обмеження продуктивності вбудованих

платформ (наприклад, NVIDIA Jetson, Raspberry Pi).

 Умови середовища - освітлення, наявність пилу, рухомих об’єктів.

Отже, задача керування автономним мобільним роботом формулюється як

складна багатокритеріальна задача оптимізації, де необхідно досягти балансу між

точністю навігації, швидкодією, енергоефективністю та безпекою руху.

Використання комп’ютерного зору є ключовим елементом у вирішенні цієї задачі,

оскільки він забезпечує робота інформацією про навколишнє середовище, дозволяє

формувати карту простору та приймати рішення в реальному часі.

Cхема постановки задачі керування автономним мобільним роботом

відображає основні етапи: Вхідні дані (камери, сенсори) → Попередня обробка

зображень → Алгоритми комп’ютерного зору → Прийняття рішень (керуючий

32

модуль) → Керуючі сигнали → Виконавчі механізми, які отримують команди та

рухають робота → Зворотний зв’язок для корекції руху.

Розробка ефективної системи керування автономним мобільним роботом

потребує чіткого визначення вимог, які забезпечать її працездатність, надійність і

відповідність поставленим завданням. Вимоги поділяються на функціональні,

технічні, програмні, експлуатаційні та ергономічні.

1. Функціональні вимоги. Система повинна забезпечувати автономну

навігацію робота без постійного втручання оператора. Виконання завдань із обходу

статичних та динамічних перешкод у реальному часі. Здатність до розпізнавання

об’єктів (орієнтирів, маркерів, зон руху) за допомогою алгоритмів комп’ютерного

зору. Формування оптимальної траєкторії руху з урахуванням обмежень

середовища. Реалізація зворотного зв’язку між сенсорними даними та виконавчими

механізмами. Можливість адаптації до зміни умов середовища (освітлення, погодні

умови, структура поверхні).

2. Технічні вимоги. Робот повинен бути обладнаний системою

відеоспостереження (RGB-камери, стереокамери або LiDAR за потреби). Наявність

обчислювального модуля (наприклад, Raspberry Pi, NVIDIA Jetson Nano/Orin, або

інші ARM/х86 платформи з GPU) для обробки зображень у реальному часі.

Використання сенсорів руху (IMU, енкодери, ультразвукові/інфрачервоні сенсори)

для точного позиціонування. Підтримка енергоефективного живлення

(акумулятори з достатньою ємністю, оптимізоване енергоспоживання). Вбудовані

комунікаційні інтерфейси (Wi-Fi, Bluetooth, ROS-сумісні протоколи) для інтеграції

та діагностики.

3. Програмні вимоги. Використання бібліотек комп’ютерного зору (OpenCV,

TensorFlow, PyTorch, ROS Vision). Реалізація алгоритмів локалізації та

картографування (SLAM). Підтримка реального часу в роботі алгоритмів обробки

даних. Можливість модульного оновлення програмного забезпечення.

Використання середовищ моделювання (Gazebo, Webots, MATLAB Simulink) для

тестування перед реальними експериментами.

33

4. Експлуатаційні вимоги. Простота в налаштуванні та калібруванні сенсорів

і камер. Мобільність: робот повинен вільно переміщатися в лабораторних і

напівреальних умовах (кімната, коридор, відкрите середовище). Надійність і

відмовостійкість: система повинна коректно реагувати на втрату даних із сенсорів

чи камер. Масштабованість: можливість інтеграції нових сенсорів або алгоритмів

без радикальної зміни архітектури.

5. Ергономічні вимоги. Зручний інтерфейс оператора для моніторингу стану

робота. Можливість ручного керування у випадку аварійних ситуацій.

Відображення стану системи (заряд акумулятора, сигнали сенсорів, карта навігації)

на HMI-панелі або ПК.

Таблиця 2.1

Узагальнені вимоги до системи керування автономним мобільним роботом

Категорія

вимог
Основні характеристики

Функціональні
Автономна навігація, уникнення перешкод, розпізнавання об’єктів, побудова

траєкторій

Технічні
Камери, сенсори, потужний обчислювальний модуль, енергоефективність,

комунікаційні інтерфейси

Програмні OpenCV, SLAM, підтримка реального часу, модульність, симуляція

Експлуатаційні Простота налаштування, мобільність, відмовостійкість, масштабованість

Ергономічні Зручний інтерфейс, ручний режим, відображення стану системи

2.2.Архітектура системи: апаратний та програмний компоненти

Архітектура системи керування автономним мобільним роботом базується на

тісній інтеграції апаратної частини та програмного забезпечення, які спільно

забезпечують здатність робота сприймати навколишнє середовище, приймати

рішення та виконувати необхідні дії. Правильний розподіл функцій між цими

двома рівнями дозволяє досягти високої ефективності, гнучкості та

масштабованості системи.

Апаратна частина системи складається з комплексу сенсорів,

обчислювальних модулів, комунікаційних інтерфейсів та виконавчих механізмів.

Вона формує основу, на якій реалізуються всі алгоритмічні та програмні рішення.

34

Сенсори та системи сприйняття

o Лідар (LiDAR) – для побудови тривимірних карт оточення та точного

визначення відстаней до об’єктів.

o Камери (RGB, стерео, RGB-D) – для комп’ютерного зору, виявлення

об’єктів, розпізнавання дорожніх знаків або орієнтирів.

o Ультразвукові та інфрачервоні датчики – для ближнього зондування та

уникнення перешкод у реальному часі.

o IMU (інерційний вимірювальний блок: гіроскоп, акселерометр,

магнітометр) – для стабілізації руху та визначення положення робота у просторі.

o GPS/RTK-GPS – для глобальної навігації на відкритих просторах.

Обчислювальні модулі

o Центральний процесор (CPU) або вбудований контролер (наприклад,

NVIDIA Jetson, Raspberry Pi, Intel NUC) – для виконання високорівневих

алгоритмів навігації та машинного зору.

o Мікроконтролер (STM32, Arduino, ESP32, Siemens Logo! або S7-1200)

– для обробки сигналів від сенсорів нижнього рівня та управління виконавчими

механізмами.

o Графічний процесор (GPU) – для прискорення обчислень у задачах

машинного навчання та глибинного зору.

Виконавчі механізми

o Електродвигуни коліс із контролерами (H-міст, драйвери PWM).

o Сервоприводи – для точного позиціювання та управління

маніпуляторами.

o Актуатори для допоміжних функцій (маніпулятори, захвати, камери на

карданних підвісах).

Комунікаційні інтерфейси - CAN-шина, I2C, SPI, UART для внутрішнього

обміну даними між сенсорами та контролерами; Wi-Fi, Bluetooth, LTE/5G – для

віддаленого моніторингу, діагностики та управління.

Програмна частина системи забезпечує аналіз даних від сенсорів, прийняття

рішень, планування руху та управління виконавчими механізмами.

35

Рівень операційної системи. Використання Linux-орієнтованих платформ

(наприклад, Ubuntu з підтримкою ROS/ROS2) для багатозадачності, роботи з

драйверами сенсорів та підтримки програмного забезпечення в реальному часі. Для

мікроконтролерів – прошивки на основі FreeRTOS або bare-metal-програмування.

Рівень проміжного програмного забезпечення (middleware). ROS/ROS2

(Robot Operating System) – модульна система з вузлами (nodes), які обробляють

сенсорні дані, управляють рухом, виконують навігацію. Модулі обробки зображень

(OpenCV, TensorFlow Lite, PyTorch Mobile) – для розпізнавання об’єктів та

реалізації алгоритмів комп’ютерного зору. Алгоритми планування траєкторії та

уникнення перешкод (A*, D*, RRT, MPC).

Рис. 2.1. Архітектура системи керування автономним мобільним роботом

Алгоритмічний рівень. Злиття даних (sensor fusion) з IMU, LiDAR та камер

для підвищення точності локалізації. SLAM (Simultaneous Localization and

Mapping) – побудова карти та одночасна навігація. Машинне навчання та нейронні

мережі – для адаптивного прийняття рішень та прогнозування дій у динамічному

середовищі.

Інтерфейс користувача. Веб-додаток або HMI-панель для моніторингу стану

робота. Візуалізація карти, сенсорних даних та плану маршруту. Модуль

дистанційного керування та налагодження.

Функціонування системи відбувається у кілька етапів:

Інтерфейс оператора

(моніторинг, ручне

керування)

Обчислювальний

модуль (Raspberry Pi,

jetson, STM32)

 Сенсорна підсистема

(камери, LiDAR, IMU)

 Виконавчі механізми

(двигуни, сервоприводи)

 Алгоритми

комп’ютерного зору

(OpenCV, ML, SLAM)

 OC / Middleware (Linux,

ROS, RTOS)

 Система керування

рухом (PID, MPC,

планування траєкторій)

36

1. Сенсори збирають дані про навколишнє середовище. Камери, LiDAR,

ультразвукові датчики, IMU та енкодери формують набір даних про навколишнє

середовище та власний стан робота. Ці дані передаються на обчислювальний

модуль у реальному часі.

2. Мікроконтролери здійснюють попередню обробку сигналів та

передають їх до центрального обчислювального модуля. Одноплатні комп’ютери

(наприклад, Raspberry Pi або NVIDIA Jetson) та мікроконтролери (STM32, Arduino)

виконують первинну обробку сигналів та слугують «центром керування», що

забезпечує взаємодію всіх компонентів.

3. На рівні програмного забезпечення виконується аналіз даних,

локалізація, планування траєкторії та прийняття рішень. На базовому рівні

функціонує операційна система (Linux, ROS, RTOS), яка забезпечує сумісність

програм і апаратури. Алгоритми комп’ютерного зору (OpenCV, SLAM, нейронні

мережі) реалізують сприйняття навколишнього середовища, виявлення об’єктів та

побудову карти. Система керування рухом застосовує методи планування траєкто

рії та регулятори (PID, MPC, нечітка логіка) для визначення оптимальних дій.

4. Виконавчі механізми реалізують сформовані команди, забезпечуючи

рух та взаємодію з об’єктами. Включають двигуни постійного струму,

сервоприводи та відповідні драйвери, які реалізують керуючі дії, що надходять від

системи управління рухом.

5. Комунікаційні модулі забезпечують обмін інформацією з оператором

або іншими роботизованими системами. Дає можливість моніторингу стану робота,

візуалізації карти середовища, перевірки працездатності сенсорів та, за

необхідності, ручного керування. Дані із сенсорної підсистеми надходять в

обчислювальний модуль, де вони проходять програмну обробку. Після цього

формується керуюча команда для виконавчих механізмів, що реалізує рух.

Отриманий результат знову сприймається сенсорами, утворюючи замкнуту

систему зворотного зв’язку.

Отже, архітектура системи керування автономним мобільним роботом є

багаторівневою та інтегрованою. Апаратна частина формує основу для збору даних

37

і виконання дій, тоді як програмне забезпечення відповідає за інтелектуальну

обробку інформації та прийняття рішень.

Вибір алгоритмів комп’ютерного зору та методів керування для

розроблюваної системи керування автономним мобільним роботом. Підбір

алгоритмів базується на критеріях: точність, швидкодія в реальному часі, стійкість

до шумів і змін освітлення, вимоги до обчислювальних ресурсів, можливість

інтеграції у ROS/ROS2, і здатність до масштабування та навчання.

Перед вибором алгоритмів необхідно фіксувати системні обмеження:

 апаратна платформа: (наприклад) NVIDIA Jetson Nano / Xavier / Orin - GPU

прискорення доступне;

 цільова частота оновлення системи (реальне час) ≥ 10–30 FPS для навігації;

 енергетичні обмеження: повинен бути компроміс між моделлю й

автономністю;

 середовище: внутрішні приміщення (закриті) або змішані (внутрішні +

зовнішні);

 рівень автономності: локальне рішення на борту з можливістю відправки

логів на сервер.

Ці обмеження визначають пріоритети: для Jetson Nano обирати легковагові

моделі; для Xavier/Orin - дозволяється більш важка мережа.

Для навігації й орієнтації виділимо набір основних завдань, для кожного з

яких підберемо алгоритми:

1. Попередня обробка зображень - шумоподавлення (Gaussian, bilateral

filter); корекція гами / баланс білого; вирівнювання гистограм (CLAHE) для

стійкості при змінному освітленні; дебаєризація, калібрування камери

(відкалібровані матриці та коефіцієнти дисторсії).

2. Виділення ознак / локальні дескриптори - ORB - швидкий та

інваріантний до обертання/масштабу; підходить для вбудованих платформ; SIFT /

SURF - точніші, але важчі (корисні для офлайн-аналізу або потужного апгрейду);

BRISK, AKAZE - компроміс швидкості та точності.

38

3. Візуальна одометрія (VO) - Feature-based VO: ORB-VO - легкий і

ефективний для реального часу; Direct methods: DSO (Direct Sparse Odometry) -

краща точність у деяких сценаріях, але чутливі до освітлення; Deep VO (Deep

learning based) - наприклад DeepVO для специфічних задач (вимагає тренування).

4. SLAM (локалізація + картографування) - ORB-SLAM2 / ORB-SLAM3 -

перевірено, добре працює з моно/стерео/RGB-D; має вже готові ROS-обгортки;

RTAB-Map - робить RGB-D та мобільні карти, зручно інтегрується в ROS; Лідарні

SLAM: Cartographer (Google), Hector SLAM - при наявності LIDAR; Visual-Inertial

SLAM (VIO): VINS-Mono / VINS-Fusion - з IMU для підвищення стійкості.

5. Виявлення і класифікація об’єктів - для детекції в реальному часі:

YOLO-family (YOLOv5/YOLOv8, Tiny-YOLO для вбудованих), SSD - швидкі,

оптимізовані версії; Faster R-CNN - вищоякісна детекція, але ресурсозатратна; для

легких платформ: MobileNet-SSD, TinyYOLO, або EfficientDet-lite.

6. Семантична та інстанс-сегментація - Semantic: DeepLabV3+, SegNet -

для розуміння дорожнього полотна, зон проходу; Instance: Mask R-CNN - коли

потрібна точна форма об’єктів (дорого, треба GPU).

7. Оцінка глибини / реконструкція сцени - стереозір: block-matching,

Semi-Global Matching (SGM) - класичні, працюють на стерео-камері; Depth sensors:

Intel RealSense (RGB-D) - надає depth map апаратно; Learning-based depth estimation

(Monodepth2) - для однокамерних сценаріїв (вимагає тренування).

8. Відстеження об’єктів (tracking) - SORT / DeepSORT - поєднання

детекції + простого трекінгу для рухомих об’єктів; GOTURN / Siamese-tracking -

якщо потрібно високошвидкісний трекінг конкретних об’єктів.

Для різних рівнів контролю рекомендується комбінувати класичні та сучасні

підходи - «гібридна» архітектура.

A) Низькорівневий контроль (motor control) - PID-регулятори - для швидкої

стабілізації швидкості та позиції (реалізація на мікроконтролері/виконавчому

контроллері). Для точнішого контролю (з урахуванням системної динаміки) - PI/PD

або LQR (коли відома лінійна модель).

B) Середньорівневий контроль (локальне планування)

39

 Reactive/local planners: DWA (Dynamic Window Approach) - локальний

планувальник, швидко ухвалює безпечні маневри; TEb (Timed Elastic Band) - добре

працює у динамічних середовищах, під час руху по вузьких коридорах.

 Hybrid A/D** - для автопілотних сценаріїв зі складними обмеженнями руху.

C) Високорівневе планування (глобальне)

 A* або D*-Lite - класичні, надійні алгоритми для побудови глобального

маршруту на карті;

 PRM / RRT / RRT* - для конфігураційної просторової навігації у складних

середовищах;

 MPC (Model Predictive Control) - оптимальне планування з урахуванням

динаміки та обмежень, добре підходить для транспортних роботів; може

працювати в режимі реального часу при правильній оптимізації.

D) Навчальні підходи для ухвалення рішень

 Reinforcement Learning (RL) - корисний для складних неперервних завдань;

застосовувати для високорівневої політики (напр., вибір поведінки) або як

доповнення для оптимізації локальних політик. Для реального застосування варто

тренувати в симуляторі (Gazebo, PyBullet) і проводити сим2real адаптацію.

 Imitation Learning / Behavioral Cloning - корисно для наслідування поведінки

експерта (наприклад, операторів).

2.3.Вибір сенсорів і камер для комп’ютерного зору

Ефективність функціонування автономного мобільного робота

безпосередньо залежить від якості та надійності сенсорної системи, яка забезпечує

отримання даних про навколишнє середовище. Застосування комп’ютерного зору

у керуванні роботами передбачає використання різних типів камер і сенсорів,

здатних працювати у реальному часі, в умовах змінного освітлення та за наявності

перешкод. При виборі апаратних засобів для системи комп’ютерного зору слід

враховувати різні параметри. Роздільна здатність і частота кадрів – визначають

деталізацію зображення та можливість обробки динамічних сцен. Для роботів

40

важливо забезпечити щонайменше 30 fps при роздільній здатності не нижче

640×480 пікселів, а для складніших задач навігації – 60 fps та HD-якість. Поле зору

(FOV) – широкий кут огляду (від 90° до 180°) дозволяє зменшити кількість сліпих

зон. Глибина різкості та освітленість – сенсори повинні коректно працювати як у

добре освітлених, так і у темних умовах. Затримка передачі даних (latency) –

критично важлива для задач реального часу, оскільки затримки понад 100 мс

можуть знижувати точність навігації. Сумісність із ROS/ROS2 – наявність

драйверів та підтримки стандартних повідомлень (sensor_msgs/Image,

sensor_msgs/PointCloud2). Вартість та енергоспоживання – для мобільного робота

важливо знайти баланс між продуктивністю і споживанням енергії.

Таблиця 2.2

Порівняння сенсорів для комп’ютерного зору

Тип

сенсора

Приклади

моделей
Переваги Недоліки Застосування

RGB-

камера

Logitech C920,

Raspberry Pi

Cam

Доступна ціна

Простота інтеграції

Сумісність з

OpenCV/ML

Не надає глибину

Залежність від

освітлення

Базове розпізнавання

об’єктів, навігація в

контрольованих умовах

Стерео

камера

ZED 2i, Intel

RealSense

D435i

Оцінка глибини

Природне 3D

сприйняття

Високі вимоги до

обчислювальних

ресурсів.

Залежність від

освітлення

SLAM, автономна

навігація в

приміщеннях

RGB-D

камера

Intel RealSense

L515, Azure

Kinect

Отримання кольоро

вого зображення і

карти глибини

Сумісність із ROS2

Зниження точності

на сонці

Вища ціна

Побудова карти

середовища,

розпізнавання об’єктів

у 3D

Лідар

(LiDAR)

Hokuyo URG-

04LX,

Velodyne VLP-

16

Висока точність

вимірювання

відстаней

Робота у темряві

Дуже висока

вартість.

Не розпізнає

текстури

Автономні автомобілі,

точне картографування

IMU
MPU-6050,

Bosch BNO055

Мала ціна

Вимірювання

прискорень і кутових

швидкостей

Накопичення

похибки (дрейф)

Допоміжний сенсор у

навігації та стабілізації

Ультра

звук

HC-SR04,

MaxBotix

Простота

Низька ціна

Мала дальність

Чутливість до

поверхонь

Виявлення перешкод на

близьких відстанях

GPS
u-blox NEO-

M8N

Глобальне

позиціонування

Низька точність у

приміщенні

Залежність від

сигналу

Зовнішня навігація на

відкритій місцевості

41

Основні типи сенсорів для комп’ютерного зору

1. RGB-камери використовуються для класичного розпізнавання об’єктів,

аналізу кольору, сегментації.

2. Стереокамери складаються з двох синхронізованих RGB-камер, що

дозволяє отримувати карти глибини на основі стереозору.

3. RGB-D камери (глибини) поєднують RGB-камеру та датчик глибини

(на основі інфрачервоного випромінювання чи Time-of-Flight технології).

4. Лідари (LiDAR) - лазерні сенсори, що формують 2D або 3D карту

середовища.

5. Інші сенсори (IMU, ультразвукові датчики, GPS).

IMU (інерційні вимірювальні блоки) – для оцінки орієнтації та прискорення.

Ультразвукові датчики – для близького виявлення перешкод.

GPS – для глобального позиціонування (застосовно для зовнішнього середовища).

Складемо узагальнену порівняльну таблицю 2.2 сенсорів і камер, які

використовуються в автономних мобільних роботах для комп’ютерного зору.

Обґрунтування вибору для проєкту. Для поставленої задачі – розробки

системи керування автономним мобільним роботом на основі комп’ютерного зору

– найбільш доцільним є поєднання RGB-D камери та IMU. RGB-D камера

(наприклад, Intel RealSense D435i) дозволить отримувати одночасно кольорове

зображення та карту глибини, що є базовою вимогою для алгоритмів SLAM.

Вбудований IMU забезпечить додаткову інформацію для стабілізації оцінки

траєкторії. Для тестових експериментів можливе застосування звичайної USB

RGB-камери, що дозволить перевірити працездатність алгоритмів на простому

рівні. Таким чином, обрана комбінація сенсорів забезпечує баланс між точністю,

вартістю та енергоспоживанням, а також сумісність із ROS2, що є критично

важливим для інтеграції всієї системи. На рис.2.2 показано апаратні сенсори: RGB-

D/стерео-камери та LiDAR; допоміжні сенсори: IMU, енкодери, ультразвук; модуль

перцепції: перша обробка кадрів, детекція, сегментація, оцінка глибини; модуль

локалізації та SLAM (ORB-SLAM/RTAB-Map/VINS); планувальник (глобальний +

локальний) і контролер руху, що видає cmd_vel приводу робота.

42

Рис.2.2. Блок-схема сенсорної підсистеми для комп’ютерного зору в автономному

мобільному роботі.

Стрілки показують потік даних: сенсори → перцепція → SLAM →

планувальник → контролер → виконавчі механізми; IMU/енкодери дають дані для

перцепції та SLAM, LiDAR може подаватися як в перцепцію, так і безпосередньо в

SLAM.

1. RGB-D камера → Перцепція передає дані з глибиною (кольорове зображення

+ карта глибини) у модуль обробки зображень, використовується для побудови

тривимірного середовища, розпізнавання об’єктів і сегментації сцени.

2. Стереокамера → Перцепція. Подвійна камера генерує стереопару зображень.

Модуль перцепції використовує ці дані для відновлення карти глибин, що дозволяє

визначати відстань до об’єктів без LiDAR.

3. LiDAR → Перцепція. Передає хмару точок або відстані до об’єктів.

Інтегрується з даними камер, підвищуючи точність просторової карти (особливо

для навігації в умовах слабкого освітлення або високої текстурованості).

4. IMU → Перцепція. Інформація про прискорення та кутові швидкості

дозволяє уточнити траєкторію руху. Використовується для компенсації розмиття

кадрів під час руху та стабілізації алгоритмів обробки.

5. Енкодери / Ультразвукові сенсори → Перцепція. Енкодери дають одометрію

(кількість обертів коліс). Ультразвукові сенсори уточнюють дані про близькі

RGB-D камера

 LiDAR

 Енкодери /

Ультразвукові

сенсори

 Cтерео-камера

 Планувальник

(global + local)

(planner node)

 IMU – інерційний

датчик

 Модуль обробки

зображень

(OpenCV, DNN,

depth processing)

(perception node)

 Модуль локалізації /

SLAM ORB-SLAM /

RTAB-Map / VINS

(slam node)

 Контролер руху

(controller node)

(cmd_vel -> приводи)

43

перешкоди, що дозволяє перцепції враховувати локальні обмеження (наприклад,

стіни, бордюри).

6. Перцепція → SLAM. Оброблені дані (ключові точки, карти глибини,

сегментовані об’єкти) передаються в модуль локалізації та побудови карти

(SLAM). SLAM інтегрує їх із сенсорними даними для формування карти та оцінки

положення робота.

7. SLAM → Планувальник. SLAM надає карту навколишнього середовища та

оцінку координат робота. Планувальник використовує цю інформацію для

побудови глобального та локального маршруту руху.

8. Планувальник → Контролер. Передає послідовність цільових точок або

траєкторій. Контролер генерує низькорівневі команди руху (cmd_vel), що

регулюють швидкість і напрям.

9. SLAM → Контролер (додатково). Оцінка одометрії від SLAM може напряму

подаватися в контролер для уточнення траєкторії. Це підвищує стабільність руху

навіть у випадках, коли планувальник оновлюється повільніше.

Таблиця 2.3

Потоки даних у системі керування автономним роботом

№ Звідки Куди Тип даних Призначення

1 RGB-D камера Перцепція
Зображення + карта

глибини

Побудова 3D-середовища,

сегментація та розпізнавання

об’єктів

2 Стереокамера Перцепція Стереопара зображень
Оцінка глибини за допомогою

стереозору, визначення відстаней

3 LiDAR Перцепція Хмара точок / відстані

Точне картування простору,

виявлення перешкод незалежно

від освітлення

4 IMU Перцепція
Прискорення, кутові

швидкості

Стабілізація алгоритмів, компен

сація руху, уточнення пози

5
Енкодери /

Ультразвук
Перцепція

Одометрія, дані про

близькі перешкоди

Уточнення локальної карти та

руху, уникнення зіткнень

6 Перцепція SLAM
Оброблені дані (ключо

ві точки, карти глибин)

Локалізація робота, побудова

карти середовища

7 SLAM Планувальник
Карта середовища,

координати робота

Планування глобального та

локального маршруту руху

8 Планувальник Контролер
Траєкторія, цільові

точки

Генерація команд руху (лінійна і

кутова швидкість)

9 SLAM Контролер
Оцінка одометрії,

положення

Уточнення руху, стабілізація

керування у реальному часі

44

2.4. Розробка моделі навколишнього середовища

Одним із ключових етапів створення системи керування автономним

мобільним роботом є формування адекватної моделі навколишнього середовища, у

якій робот здійснює локалізацію, планування траєкторій та навігацію. Без

достовірного уявлення про простір робот не здатен ефективно уникати перешкод і

виконувати поставлені завдання.

Модель середовища, у якій працює автономний робот, повинна

забезпечувати йому достатньо інформації для орієнтації та прийняття рішень, тому

важливо, щоб вона водночас була інформативною, гнучкою та легко

обчислюваною. Насамперед така модель має відображати найважливіші елементи

простору - розташування стін, перешкод, значущих об’єктів і зон вільного руху,

тобто містити стільки даних, щоб робот міг безпечно переміщатися та

прогнозувати свою траєкторію. Водночас важливо, щоб ця модель була

масштабованою й однаково добре підходила для невеликих експериментальних

приміщень, таких як лабораторія або тестова кімната, і для великих реальних

просторів, наприклад коридорів, складів чи навіть міських вулиць. Ще однією

ключовою вимогою є її актуальність: робот постійно взаємодіє з мінливим

середовищем, тому модель повинна оновлюватися в режимі реального часу,

враховуючи появу нових об’єктів або зміщення існуючих. Крім того, формат

представлення оточення не повинен створювати надмірне навантаження на

процесор чи пам’ять, адже роботичні системи часто працюють на обмежених

апаратних ресурсах. Саме тому обчислювальна ефективність моделі має бути

збалансована з її інформативністю, щоб забезпечити швидку реакцію та надійність

у роботі.

У сучасній робототехніці використовують кілька типів моделей:

1. Геометричні моделі (метричні карти) представляють середовище у

вигляді сітки (occupancy grid) або тривимірної карти (OctoMap). Кожна клітинка

містить інформацію про ймовірність наявності перешкоди. Переваги: висока

45

точність, можливість обчислювати відстані, зручно для планування шляху.

Недоліки: велика потреба в пам’яті, особливо для 3D.

2. Топологічні моделі описують простір у вигляді графа: вершини –

ключові точки (перехрестя, кімнати), ребра – зв’язки між ними. Використовуються

для високорівневого планування маршрутів. Переваги: компактність, зручність для

навігації між зонами. Недоліки: низька точність локальної орієнтації.

3. Гібридні моделі поєднують метричні та топологічні підходи. Робот

використовує топологічну карту для глобальної навігації, а локальні метричні

карти – для уникнення перешкод у реальному часі. Це є найбільш поширеним

підходом у системах SLAM нового покоління (наприклад, RTAB-Map).

4. Семантичні карти додатково до геометрії середовища містять

інформацію про типи об’єктів (стілець, двері, людина). Використовуються у

роботах для взаємодії з людьми або маніпуляції об’єктами. Створюються на основі

алгоритмів комп’ютерного зору (CNN, сегментація, детекція об’єктів).

Для формування моделі середовища використовуються: камери (RGB, RGB-

D, стерео) – дозволяють відновлювати структуру сцени та глибину; LiDAR –

генерує хмару точок для побудови точних карт приміщення; IMU та одометрія –

уточнюють положення робота при побудові карти. Дані сенсорів об’єднуються у

рамках алгоритмів SLAM (Simultaneous Localization and Mapping), які одночасно

вирішують дві задачі: побудову карти і визначення позиції робота у ній.

З огляду на завдання дипломної роботи та наявні ресурси, для моделювання

середовища пропонується використати гібридний підхід. На нижчому рівні

застосовується occupancy grid 2D/3D для детального опису навколишнього

простору. Для більш ефективного планування на глобальному рівні – топологічна

карта у вигляді графа зон і переходів. У перспективі можлива інтеграція

семантичної карти, що дозволить розрізняти об’єкти і приймати рішення залежно

від їхньої природи (наприклад, «двері» можна відкрити, а «стіна» є непрохідною).

Розроблена модель середовища дозволить роботу формувати адекватне

уявлення про простір; виконувати локалізацію у просторі з прийнятною точністю;

46

будувати оптимальні маршрути руху; уникати зіткнень у реальному часі;

адаптувати поведінку до змін у середовищі (поява нових перешкод).

Узагальнена порівняльна таблиця моделей навколишнього середовища

подано у таблиці 2.4.

Таблиця 2.4

Порівняння типів моделей середовища для автономних мобільних роботів

Тип моделі Опис Переваги Недоліки Застосування

Метрична

(occupancy

grid, OctoMap)

Простір розбитий

на клітинки або

вокселі з

імовірністю

зайнятості

Висока точність

Можливість

обчислювати

відстані

Добре підходить

для планування

траєкторій

Висока потреба в

пам’яті

Обчислювально

затратна при 3D

Детальне

картографування

приміщень, SLAM у

2D/3D

Топологічна

Середовище

представлено як

граф із вершинами

(зони) та ребрами

(зв’язки)

Компактність

Ефективність

при глобальній

навігації

Мала потреба в

ресурсах

Низька локальна

точність

Погано описує

дрібні перешкоди

Планування

маршрутів у великих

просторах (коридори,

будівлі)

Гібридна

Поєднання

метричних карт для

локальної навігації

та топології для

глобальної

Оптимальний

баланс точності

й ефективності

Гнучкість у

застосуванні

Сумісність із

сучасними

SLAM

Складність

реалізації

Потреба в

синхронізації

двох рівнів карти

Складні середовища

(склади, офіси,

лабораторії)

Семантична

Містить не лише

геометрію, а й

значення об’єктів

(стіна, двері,

людина)

Високий рівень

інтелекту

Можливість

контекстних дій

Взаємодія з

об’єктами

Велика потреба в

обчисленнях

Потребує

алгоритмів

комп’ютерного

зору

Сервісні роботи,

роботи-помічники,

роботи в побуті

Ця таблиця підкреслює, що гібридні моделі є найраціональнішим вибором

для системи автономної навігації, бо поєднують переваги метричних та

топологічних підходів.

2.5. Постановка задачі розпізнавання та обробки зображень

Сучасні системи комп’ютерного зору виконують широкий спектр завдань -

від базового виявлення об’єктів до їх класифікації, відстеження та інтерпретації у

47

контексті навколишнього середовища. У межах даного проєкту ключовим

завданням є створення системи, здатної автоматично аналізувати відеопотік або

зображення в реальному часі, виділяти значущі об’єкти, визначати їх властивості

та приймати на основі цього керуючі рішення.

На рис.2.3 подана наочна блок-схема постановки задачі розпізнавання та

обробки зображень: вона показує шлях від отримання вхідного зображення/відео

до прийняття рішення та формування сигналу для системи керування автономним

роботом. Подам детальний опис кожного етапу схеми постановки задачі

розпізнавання та обробки зображень з прикладами алгоритмів і практичними

реалізаціями.

Отримання даних (Input Image/Video). Сенсори - RGB-камери, стереокамери

(Intel RealSense, ZED), RGB-D камери (Kinect), тепловізори. Формат даних -

відеопотік (ROS2 topics /camera/image_raw) або окремі зображення. Приклад: у

ROS2 використовується пакет image_transport для передачі зображень у реальному

часі.

Рис.2.3. Блок-схема постановки задачі розпізнавання та обробки зображень.

Вхідне зображення / відео

Попередня обробка (фільтрація, нормалізація, трансформації)

Виділення ознак (градієнти, контури, дескриптори)

Сегментація / класифікація (CNN, SVM, нейромережі)

Відстеження та аналіз динаміки (Object Tracking)

Прийняття рішення (сигнал для системи керування)

48

Попередня обробка зображень (Preprocessing) застосовується для

покращення якості даних, зменшення шуму та підготовка для аналізу. Тут

застосовуються такі методи: нормалізація яскравості й контрасту, фільтрація шуму

(Gaussian Blur, Median Filter), перетворення кольорів (RGB → HSV, Grayscale),

корекція дисторсії камери (OpenCV cv2.undistort).

Код у Python + OpenCV:

import cv2

img = cv2.imread("frame.png")

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

blurred = cv2.GaussianBlur(gray, (5,5), 0)

Виділення ознак (Feature Extraction) використовують, щоб знайти

інформативні елементи сцени (контури, кути, ключові точки), використовують

детектори ключових точок (SIFT, SURF, ORB); аналіз контурів і градієнтів (Canny,

Sobel, HOG); виявлення текстурних та колірних характеристик; побудова

дескрипторів для подальшої класифікації. Сучасні методи - згорткові нейронні

мережі (CNN) для виділення ознак автоматично.

Приклад: ORB у OpenCV:

orb = cv2.ORB_create()

keypoints, descriptors = orb.detectAndCompute(gray, None)

Сегментація об’єктів - порогова обробка (Otsu, Adaptive Thresholding);

методи кластеризації (K-means, Mean-Shift); сегментація на основі глибинної

інформації (RGB-D камери); використання сучасних нейронних мереж (Mask R-

CNN, U-Net) для точного відділення об’єктів від фону. Розпізнавання об’єктів та

класифікація - використання класичних методів (SVM, Random Forest, KNN) на

основі виділених ознак; застосування згорткових нейронних мереж (CNN: ResNet,

EfficientNet, MobileNet) для класифікації та виявлення об’єктів; багатокласова

класифікація з можливістю розширення на нові категорії. Розпізнавання та

інтерпретація (Recognition & Interpretation) виконує такі задачі: розпізнавання

об’єктів (YOLOv8, Faster R-CNN), сегментація середовища (DeepLab, Mask R-

CNN), виявлення ліній/доріжок (Hough Transform). Приклад: розпізнавання

об’єктів YOLOv8 + ROS2 (публікація bounding boxes у топіку /detections).

Відстеження об’єктів у реальному часі (Object Tracking) - алгоритми KLT,

CamShift, MedianFlow, MOSSE; сучасні deep learning методи (DeepSORT,

49

SiamMask, ByteTrack); інтеграція даних з кількох сенсорів (камери + LiDAR + IMU)

для підвищення надійності. Моделювання середовища (Environment Mapping).

SLAM-алгоритми: ORB-SLAM3 (візуальна одометрія + побудова карти), RTAB-

Map (графова оптимізація, інтеграція з LIDAR), VINS-Fusion (візуально-

інерціальна система). Вихід: локальна або глобальна карта (/map у ROS2), позиція

робота (/odom).

Прийняття рішень (Decision Making) на основі аналізу зображень -

визначення просторового положення об’єктів; оцінка траєкторії їх руху;

формування сигналів для системи керування (наприклад, запуск виконавчого

механізму при появі об’єкта у визначеній зоні). Алгоритми планування: A* та D*

(пошук найкоротшого шляху, RRT (Rapidly Exploring Random Tree) для складних

середовищ, MPC (Model Predictive Control) для реального часу. Приклад: ROS2

Navigation2 (nav2_planner) приймає карту і видає оптимальну траєкторію.

Формування керуючих сигналів (Control Commands). Перетворення

запланованого шляху у конкретні сигнали: швидкість лівого і правого колеса, кут

повороту. Використовуються: PID-регулятори, кінематика диференційного робота,

ROS2 topic /cmd_vel.

Приклад: Python-контролер у ROS2:

import rclpy

from geometry_msgs.msg import Twist

def controller():

 node = rclpy.create_node("controller")

 pub = node.create_publisher(Twist, "/cmd_vel", 10)

 twist = Twist()

 twist.linear.x = 0.2

 twist.angular.z = 0.1

 pub.publish(twist)

Необхідно розробити алгоритмічно та програмно апаратний комплекс, який

отримує дані з камер і сенсорів у режимі реального часу; виконує обробку та

розпізнавання об’єктів з мінімальними затримками; забезпечує високу точність

навіть за умов змінного освітлення, шумів, часткових перекриттів об’єктів; має

можливість масштабування для розширення кількості класів об’єктів та інтеграції

з системами керування.

50

Таблиця 2.5

Етапи обробки зображень у системі керування автономним мобільним

роботом

Етап Типові алгоритми Інструменти / бібліотеки

Отримання даних
Захоплення відео/зображень з RGB,

RGB-D, стереокамер

ROS2 image_transport, OpenCV

cv2.VideoCapture, драйвери Intel

RealSense, ZED SDK

Попередня

обробка

Фільтрація шуму (Gaussian, Median),

нормалізація, зміна кольорового

простору (RGB→HSV), корекція

дисторсії

OpenCV (фільтри, cv2.cvtColor,

cv2.undistort), ROS2 image_pipeline

Виділення ознак
SIFT, SURF, ORB, Canny Edge

Detector, CNN feature maps

OpenCV (SIFT, ORB),

TensorFlow/Keras, PyTorch (CNN

layers)

Розпізнавання та

інтерпретація

Об’єктне детектування (YOLOv8,

Faster R-CNN), сегментація (Mask R-

CNN, DeepLab)

PyTorch, TensorFlow, Ultralytics

YOLO, Detectron2

Моделювання

середовища

(SLAM)

ORB-SLAM3, RTAB-Map, VINS-

Fusion

ROS2 SLAM Toolbox, RTAB-Map

ROS2, VINS-Fusion ROS wrapper

Прийняття рішень
Планування шляху (A*, D*, RRT,

MPC)

ROS2 Navigation2 (nav2_planner,

nav2_controller), OMPL

Формування

керуючих сигналів

PID-регулятори, кінематика

диференційного робота, low-level

control

ROS2 topic /cmd_vel, Python

geometry_msgs/Twist, контролери

Arduino/STM32

Python-вузол ROS2 для розпізнавання об’єктів з YOLOv8 подано у Додатку А.

Launch-файл ROS2 для запуску YOLO-вузла подано у Додатку А.

Це працює наступним чином. Камера публікує зображення у топік

/camera/image_raw. YOLOv8 отримує кадри, виконує розпізнавання (наприклад,

людей, машини, перешкоди). Вікно cv2.imshow показує кадр з bounding boxes.

Подаю покроковий, практично-орієнтований приклад інтеграції YOLO

(перцепція) → SLAM → Navigation2 (planner → controller) у ROS2. Наведу

архітектуру, потрібні топіки, короткий план конфігурації Nav2/costmap і робочий

приклад Python-вузла, який: отримує RGB+Depth, запускає детектор (YOLOv8),

публікує результати як vision_msgs/Detection2DArray і перетворює центри bbox +

depth у точки в системі base_link, публікує їх як sensor_msgs/PointCloud2 - щоб Nav2

могла враховувати динамічні перешкоди через шар obstacle (pointcloud). Також дам

приклад launch-файла і пояснення, як зв’язати RTAB-Map (SLAM) і Nav2.

51

Архітектура пайплайну

camera_node (RGB) → /camera/image_raw

depth_node (RGB-D або стерео) → /camera/depth/image_raw

yolo_detector → читає RGB, виконує детекцію, публікує:

/perception/detections - vision_msgs/Detection2DArray (bounding boxes + class +

score)

/perception/obstacle_points - sensor_msgs/PointCloud2 (центр bbox в

координатах base_link)

slam_node (RTAB-Map / ORB-SLAM) → публікує /map, /tf, /odom

nav2 (map_server/AMCL або nav2_bringup) → бере /map і

/scan//perception/obstacle_points (як pointcloud) у costmap obstacle layer

nav2 planner → генерує глобальну траєкторію → локальний контролер (DWB/Teb) →

публікує /cmd_vel

controller_node або моторний контролер читає /cmd_vel і керує приводами

Для кожного bounding box беремо центр (u,v), читаємо глибину z з depth image,

перетворюємо (u,v,z) → (x,y,z) у системі камери за внутрішніми параметрами,

потім трансформуємо у base_link (через TF), формуємо PointCloud2 з усіма

перешкодами та публікуємо.

Приклад yolo_detector_to_pointcloud.py (ROS2, Python, rclpy) подано у Додатку Б.

Конфігурація Nav2 / costmap для прийому динамічних перешкод.

Щоб Nav2 враховував PointCloud2 із /perception/obstacle_points, слід:

У costmap_local/obstacle_layer в конфігуратори додати pointcloud або sensor

input. У Nav2 (Navigation2) використовується costmap_2d (config YAML). Додати

obstacle_layer, який читає pointcloud або pointcloud2 топік.

Фрагмент costmap_common_params.yaml подано у Додатку В.

Протокол тестування та валідації

Запустити камеру й перевірити, що /camera/image_raw та

/camera/depth/image_raw з’являються.

Запустити yolo_to_pointcloud - у RViz підключити показ Image, PointCloud2 та

Detection2DArray (через відповідний плагін) - переконатися, що точки з’являються у

base_link.

Налаштувати Nav2 costmap так, щоб читав /perception/obstacle_points і

відображався local costmap у RViz.

Тест: детектор бачить об’єкт → точка додається у costmap → planner уникає

цієї зони. Прогони у різних умовах (різне освітлення, рухомі об’єкти) і збирайте

лог (latency per stage, fps, detection confidence).

52

В результаті ми отримали наступне - перцепція (YOLO) у реальному часі, яка

трансформує детекції в точки перешкод; SLAM (RTAB-Map) будує карту і дає

локалізацію; Nav2 використовує карту + динамічні точки від перцепції для корекції

локального costmap; планувальник (global+local) генерує траєкторії, локальний

контролер (DWB/TEB) публікує /cmd_vel; контролер/драйвер виконує їх.

2.6. Визначення методів прийняття рішень на основі обробки візуальних

даних

Одним з ключових завдань системи керування автономним мобільним

роботом є прийняття рішень на основі аналізу навколишнього середовища.

Комп’ютерний зір виступає основним джерелом інформації для розуміння сцени,

виявлення перешкод, розпізнавання об’єктів та формування траєкторії руху.

Прийняття рішень у цьому контексті можна розглядати як багаторівневий процес,

що включає: інтерпретацію візуальних даних, оцінку ситуації та формування

керуючих дій.

Таблиця 2.6

Порівняння методів прийняття рішень у робототехніці

Клас методів
Приклади

алгоритмів
Переваги Недоліки

Типові сфери

застосування

Класичні

алгоритмічні

методи

if-else правила,

A*, D*, Dijkstra,

PID-контролери

- Простота реалізації

- Висока швидкість

обчислень

- Передбачуваність

результатів

- Погана адаптація

до змін

- Важко працюють

у складних

середовищах

- Не враховують

невизначеність

Навігація у

відомому

середовищі,

інженерні

роботи,

транспортні

візки

Методи на

основі

машинного

навчання та

ШІ

CNN для

прийняття рішень,

Reinforcement

Learning (DQN,

PPO, SAC),

ієрархічні моделі

- Адаптація до змінних

умов

- Можливість навчання

на великих обсягах

даних

- Висока точність

розпізнавання об’єктів

- Велика потреба у

даних

- Високі обчислюва

льні ресурси

- Складність

інтерпретації

рішень

Автономні

автомобілі,

сервісні роботи,

роботи-кур’єри

Імовірнісні

методи

Баєсівські мережі,

MDP/POMDP,

Kalman Filter,

Particle Filter

- Можливість роботи з

неповними даними

- Врахування шуму і

невизначеності

- Висока складність

обчислень

- Потреба у корек

тних статистичних

Роботи для

пошуку і

порятунку,

автономні

53

Клас методів
Приклади

алгоритмів
Переваги Недоліки

Типові сфери

застосування

- Добра інтеграція з

сенсорами

моделях

- Труднощі

масштабування

дрони, роботи в

складних

середовищах

Гібридні

системи

(поєднання

класичних та

AI-підходів)

ORB-SLAM + A*,

RL з правилами

безпеки,

Navigation2 +

YOLO

- Комбінують точність і

адаптивність

- Вищий рівень

надійності

- Гнучкість у складних

середовищах

- Складність

інтеграції

- Зростання вимог

до ресурсів

- Необхідність

багаторівневої

відладки

Складні автоном

ні роботи,

промислова

автоматизація,

мобільні

платформи для

досліджень

Низькорівневі рішення (рефлекторні реакції) включають реакції на

безпосередні візуальні сигнали, наприклад, уникнення перешкод після виявлення

об’єкта на шляху. Такі методи часто реалізуються через прості евристики

(наприклад, «зупинись, якщо відстань < 30 см»). Середньорівневі рішення

(тактичні дії) передбачають аналіз сцени для вибору шляху руху між кількома

можливими варіантами. Наприклад, вибір коридору з меншою кількістю перешкод

чи визначення точок орієнтирів у навігації. Високорівневі рішення (стратегічне

планування) включають складніші завдання, такі як слідування до цілі, оптимізація

маршруту, виконання завдань у змінному середовищі.

Методи прийняття рішень на основі візуальних даних формують «мозок»

автономного мобільного робота. Вибір конкретного підходу залежить від вимог до

швидкодії, адаптивності та точності. Найперспективнішими є гібридні системи, де

поєднуються традиційні алгоритми планування з сучасними моделями глибокого

навчання, що забезпечує баланс між стабільністю, інтелектуальністю та

ефективністю.

Ефективна робота автономного мобільного робота можлива лише за умови

тісної інтеграції всіх підсистем у єдине інформаційно-керуюче середовище.

Основними складовими системи є: сенсорний модуль, блок комп’ютерного зору,

система локалізації та навігації, модуль планування траєкторій, підсистема

прийняття рішень та виконавчі механізми.

54

РОЗДІЛ 3.

РЕАЛІЗАЦІЯ АЛГОРИТМІВ КОМП’ЮТЕРНОГО ЗОРУ ТА КЕРУВАННЯ

3.1. Обробка вхідних зображень: передобробка, фільтрація

Ефективність систем комп’ютерного зору автономних мобільних роботів

безпосередньо залежить від якості вхідних зображень, отриманих із камер чи інших

сенсорів. Будь-яке зображення, яке надходить із реального середовища, містить

спотворення - шум, розмиття, неоднорідність освітлення, оптичні викривлення.

Тому першим етапом роботи системи є передобробка (preprocessing), метою якої є

покращення якості зображення, підвищення контрасту та виділення суттєвих ознак

для подальшої інтерпретації сцени.

Передобробка зображення є ключовим етапом у всьому процесі

комп’ютерного зору, оскільки саме на цьому рівні формується якість даних, з

якими надалі працюватиме система. Зображення, що надходять від камер, можуть

мати різні формати, роздільні здатності та особливості кольорових моделей, тому

їх спершу приводять до узгодженого вигляду: виконують конвертацію у потрібний

формат, наприклад із кольорового RGB у відтінки сірого, а також масштабують до

стандартного розміру, що дозволяє зменшити обчислювальне навантаження і

забезпечити стабільність подальших алгоритмів. Не менш важливою є стадія

калібрування камери, коли усувають оптичні спотворення, внесені лінзою; це

роблять за допомогою матриці внутрішніх параметрів, отриманої після спеціальної

процедури калібрування, яку зазвичай реалізують засобами OpenCV або

відповідними інструментами ROS.

Великою проблемою реальних зображень є неоднорідне освітлення. Від

нього страждає розпізнавання контурів, текстур і дрібних деталей, тому часто

застосовують методи вирівнювання яскравості - від класичного гістограмного

вирівнювання до CLAHE, яке дає можливість підвищити локальний контраст без

появи пересвітів. У багатьох задачах важливим етапом також є перетворення

кольорового простору: перехід з RGB до HSV або LAB допомагає ізолювати

55

компоненти відтінку та насиченості, що особливо корисно при роботі з

кольоровими маркерами або сегментацією колірних об’єктів.

Шум у зображеннях - ще одна поширена проблема, яка потребує фільтрації.

У практиці використовують різні типи фільтрів: лінійні методи згладжування, як-

от усереднення або Гаусове розмивання, добре нівелюють високочастотний шум,

тоді як фільтр Собеля поєднує згладжування з одночасним виділенням контурів.

Нелінійні методи, як-от медіанний фільтр, усувають імпульсний шум типу «сіль і

перець» без надмірного розмиття. Білатеральна фільтрація дозволяє згладжувати

зображення більш делікатно, зберігаючи різкі границі. У системах, де камера

перебуває в русі, корисною є адаптивна фільтрація, яка автоматично підбирає

параметри згладжування відповідно до локальної структури зображення.

У процесі передобробки важливу роль відіграють і геометричні

перетворення. До них належать операції зсуву, масштабування та обертання, що

дозволяють нормалізувати зображення до потрібної форми. У задачах, де важливий

правильний ракурс, застосовують перспективну корекцію, яка виправляє

викривлення, спричинені кутом огляду камери, що є необхідним, наприклад, під

час розпізнавання маркерів або аналізу дорожньої розмітки. Часто також

здійснюється обрізання кадру, щоб зосередитися лише на тій частині зображення,

яка містить корисну інформацію, тобто на області інтересу.

Таким чином, етапи передобробки формують основу подальшого аналізу,

забезпечуючи чисті, стабільні та структуровані дані, необхідні для точного

виявлення ознак, сегментації, розпізнавання та інших складніших операцій

комп’ютерного зору.

У системах на базі ROS (Robot Operating System) передобробка виконується

у вигляді вузла (node), який підписується на топік /camera/image_raw, виконує

обробку кадрів за допомогою бібліотеки OpenCV та публікує результат у топік

/camera/image_processed.

Коду вузла у Python подано у Додатку Д.

Тут виконується триетапна обробка: конвертація кадру у відтінки сірого;

гаусове згладжування; вирівнювання гістограми для підвищення контрасту.

56

Передобробка є фундаментальним етапом у системі комп’ютерного зору

мобільного робота. Вона дозволяє мінімізувати вплив шумів і варіацій освітлення,

забезпечуючи стабільну роботу алгоритмів розпізнавання, виявлення об’єктів та

навігації. Комбінація фільтрації, нормалізації та геометричних перетворень значно

підвищує якість даних, що надходять на наступні етапи - сегментацію,

класифікацію та прийняття рішень.

3.2. Виділення ознак і розпізнавання об’єктів

Після етапу передобробки зображення система комп’ютерного зору

автономного мобільного робота переходить до виділення ознак (feature extraction)

- процесу отримання інформативних характеристик сцени, які дозволяють

розпізнавати об’єкти, визначати їхнє положення та ідентифікувати навколишні

структури. Цей етап є базовим для подальших процесів локалізації, орієнтації,

навігації та ухвалення рішень у середовищі.

У системах комп’ютерного зору фундаментальне значення мають ознаки -

характерні елементи зображення, які дозволяють алгоритмам «зачепитися» за

стабільні структури сцени. Це можуть бути кути, краї, текстурні ділянки чи інші

ключові точки, що залишаються відносно незмінними навіть тоді, коли змінюється

масштаб, кут огляду або освітлення. Саме від того, які типи ознак обрано, залежить

точність, стійкість і швидкодія всієї зорової системи, адже вимоги до них різняться

залежно від конкретного завдання: у локалізації та побудові карти (SLAM) потрібні

надійні та інваріантні точки; для розпізнавання маркерів - чіткі та контрастні

особливості; у відстеженні рухомих об’єктів - швидкі алгоритми; а для навігації в

динамічному середовищі - такі, що не губляться під дією шумів чи змін освітлення.

Підхід до виділення ознак за останні роки розділився на дві великі групи:

класичні детерміновані методи та глибинні нейронні моделі. Традиційні

алгоритми, такі як SIFT, SURF, ORB, FAST, BRISK, працюють за чіткими

правилами й математичними критеріями, пропонуючи високу точність,

інваріантність до трансформацій і надійність у змінних умовах, хоча й вимагають

57

значних обчислень. Натомість глибинні моделі - YOLO, SSD, Faster R-CNN -

виділяють ознаки автоматично завдяки навчальним даним і здатні адаптуватися до

складних сцен, однак потребують сучасних GPU і великих датасетів. Тому спектр

їхнього застосування різниться: класика залишається основою для SLAM та

автономної навігації, тоді як нейронні методи переважають у розпізнаванні

складних об’єктів і сцен.

Серед класичних підходів особливе місце займає SIFT - один із

найстабільніших і найвідоміших алгоритмів, що формує ознаки, стійкі до зміни

масштабу, поворотів та освітлення. Він працює через побудову простору

масштабів, пошук екстремумів на різниці Гаусових згладжень, точну локалізацію

ключових точок та формування дескрипторів - векторів, які унікально описують

кожну точку. SIFT вирізняється високою надійністю, хоча виконується повільніше,

а тому частіше використовується тоді, коли пріоритет - стабільність, а не

швидкість.

Прискорена версія цього підходу - SURF - покладається на інтегральні

зображення, що помітно зменшує обчислювальне навантаження. Він добре працює

у режимі реального часу, хоч і дещо поступається SIFT при значних змінах

масштабу. Цей метод часто обирають у робототехнічних системах для швидкого

знаходження орієнтирів чи об’єктів. Найефективнішим для мобільних роботів з

обмеженими ресурсами часто виявляється ORB - поєднання детектора FAST і

дескриптора BRIEF, яке забезпечує збалансовану швидкість і точність. Цей метод

став одним з найпоширеніших у практичних реалізаціях рухомих автономних

систем, оскільки не потребує потужного обладнання, але забезпечує достатню

якість ознак для навігації та локалізації.

Ралізації ORB у Python / OpenCV подана у Додатку Е. Цей код дозволяє виділити

до 1000 ключових точок на зображенні й візуалізувати їх, що є першим кроком до

реалізації навігації на основі ознак (feature-based SLAM).

Методи глибинного розпізнавання об’єктів у сучасних комп’ютерних

системах поступово витісняють класичні підходи завдяки своїй здатності

самостійно формувати ознаки та працювати з великою кількістю даних. Одним із

58

найпоширеніших представників є YOLO, архітектура, що працює в режимі

реального часу й виконує детекцію за один прохід через мережу. Вона розбиває

зображення на сітку та паралельно визначає межі й належність об’єктів до певного

класу, що забезпечує високу швидкість і можливість використовувати її навіть на

обмежених за ресурсами мобільних платформах на кшталт NVIDIA Jetson.

Інший метод - SSD - працює за схожим принципом, але залучає багаторівневу

структуру особливостей, що дає змогу точніше виявляти дрібні об’єкти, особливо

в середовищах з високою щільністю руху, таких як людські потоки або складні

динамічні простори. Завдяки своїй балансованій точності та швидкодії SSD часто

застосовують у робототехніці для навігації серед рухомих перешкод, де важливо

швидко, але досить надійно розпізнавати об’єкти.

Таблиця 3.1.

Порівняльна таблиця алгоритмів

Алгоритм Тип
Інваріантність до

масштабу/повороту
Швидкість

Необхідність

GPU
Основне призначення

SIFT Класичний Висока Низька Ні
Побудова карти,

SLAM

SURF Класичний Висока Середня Ні
Орієнтація,

локалізація

ORB Класичний Середня Висока Ні
Навігація, реальний

час

YOLOv5 Нейронний Висока
Дуже

висока
Так

Розпізнавання

об’єктів

SSD Нейронний Висока Висока Так
Виявлення дрібних

об’єктів

Faster R-

CNN
Нейронний Висока Середня Так

Точне розпізнавання

сцен

Метод Faster R-CNN, хоч і поступається обом попереднім за швидкістю,

компенсує це значно вищою точністю. Він використовує мережі регіональних

пропозицій, які спочатку визначають потенційні області, що можуть містити

об’єкти, а вже потім класифікують ці зони. Це дозволяє працювати зі складними

формами та деталізованими сценами, тому Faster R-CNN часто застосовують у

роботизованих маніпуляційних системах, де потрібно не просто виявити об’єкт, а

зрозуміти його форму, орієнтацію та межі для точного захоплення або взаємодії.

59

У сукупності глибинні методи детекції формують потужний інструментарій

для комп’ютерного зору, що дозволяє адаптуватися до різних завдань - від

швидкісної потокової обробки до високоточної інтелектуальної взаємодії з

об’єктами у складних середовищах.

У ROS2 модулі розпізнавання реалізуються як вузли (nodes), що приймають

зображення з топіка /camera/image_processed, виконують виділення ознак або

детекцію об’єктів і публікують результат у /vision/features або /vision/objects.

Структура вузлів:

/camera/image_raw → /preprocessing_node → /vision_node (ORB or YOLO) →

/slam_node → /planner_node

Виділення ознак і розпізнавання об’єктів є центральним етапом у системі

комп’ютерного зору автономного мобільного робота. Від вибору алгоритму

залежить баланс між точністю, швидкістю та обчислювальними витратами. Для

задач локалізації й навігації доцільно використовувати легкі алгоритми типу ORB,

а для детекції динамічних об’єктів - нейронні мережі YOLOv5 або SSD.

Комбінування обох підходів дозволяє досягти високої надійності системи та

забезпечити її роботу в реальному часі навіть у змінних умовах освітлення й

оточення.

3.3. Визначення положення та орієнтації робота за допомогою зору

Одним із ключових завдань системи комп’ютерного зору автономного

мобільного робота є оцінка власного положення (локалізація) та визначення

орієнтації у просторі. Цей процес лежить в основі навігації, планування маршруту

та уникнення перешкод. На відміну від традиційних методів, які базуються

виключно на інерціальних або GPS-даних, візуальна локалізація дозволяє

визначати координати навіть у закритих приміщеннях або середовищах із низькою

доступністю супутникового сигналу.

Візуальна локалізація в робототехнічних системах ґрунтується на тому, що

камера, рухаючись у просторі, фіксує безперервну зміну вигляду навколишніх

об’єктів, і саме ці зміни дозволяють оцінити як положення, так і орієнтацію

60

мобільної платформи. Робот, аналізуючи послідовність кадрів, визначає власні

координати у просторі, напрямок руху та зміну повороту між кадрами, а вся ця

інформація перетворюється у траєкторію, яку можна використовувати для

навігації. У найпростішому випадку це реалізується у вигляді візуальної одометрії,

де ключові точки на кадрах виявляються алгоритмами типу ORB чи Harris, після

чого відстежуються їхні зміщення й обчислюється трансформація між кадрами.

Такий підхід швидкий і дає відносно точні результати, однак схильний до

накопичення похибки, що змушує поєднувати його з додатковими сенсорами або

складнішими алгоритмами.

Щоб підвищити стійкість і зменшити дрейф, у робототехніці широко

застосовується візуально-інерційна одометрія, де до камери додаються дані з IMU.

Завдяки гіроскопам і акселерометрам система краще поводиться в умовах різких

рухів, вібрацій або тимчасових втрат зображення, а такі методи, як VINS-Fusion чи

OKVIS, оптимізують спільну модель руху так, щоб отримати максимально

стабільну та безперервну оцінку положення. Коли ж робот не просто повинен

оцінювати переміщення, а ще й будувати карту середовища, використовують

підходи SLAM, які поєднують оцінку позиції з паралельним моделюванням

структури простору. Це може бути SLAM, що працює на ознаках (наприклад, ORB-

SLAM), або прямі методи, які оперують інтенсивностями пікселів без явного

виділення ключових точок.

Особливого значення набуває використання глибинної інформації, коли у

систему додають стереокамери або RGB-D сенсори. Такі камери дають можливість

напряму вимірювати відстані, полегшуючи розв’язання проблеми масштабу та

зменшуючи неоднозначність у сценах зі слабкою текстурою. Пристрої типу Intel

RealSense чи ZED дають роботу детальніший просторовий контекст, що помітно

покращує локалізацію. Окрему роль відіграють математичні моделі, які

відповідають за оцінку орієнтації, - кватерніони, матриці обертання, оптимізація на

групах SO(3), а також фільтри Калмана, що згладжують шум і забезпечують

плавність руху.

61

У ROS2 весь процес реалізується через взаємодію кількох вузлів, які

передають відеопотік, інерціальні дані та розраховані трансформації у TF-дереві, а

кінцевим результатом стає повідомлення з оціненою позою робота. Саме цей

механізм дозволяє мобільним платформам автономно рухатися, уникати перешкод

і точно реагувати на зміну середовища. Завдяки поєднанню камер, інерціальних

сенсорів, алгоритмів SLAM та методів оцінки орієнтації робот отримує здатність

орієнтуватися у просторі так само впевнено, як і системи, що використовують

складніші лазерні або глибинні сенсори, але при значно менших витратах та

ширших можливостях інтеграції.

Алгоритмічна структура системи визначення положення

1. Захоплення зображення – камера подає поточний кадр у систему.

2. Виділення особливостей (features) – за допомогою алгоритмів ORB,

SIFT або SURF.

3. Відстеження особливостей у наступних кадрах – визначаються

зміщення точок у просторі.

4. Оцінка руху (motion estimation) – за допомогою методів триангуляції

або епіполярної геометрії.

5. Обчислення матриці перетворення (R, t) – отримується ротаційна (R) і

трансляційна (t) компоненти.

6. Оновлення позиції – поточна позиція робота визначається через

композицію попередніх станів:

 (3.1)

7. Фільтрація шумів – застосовується EKF (Extended Kalman Filter) або

UKF (Unscented Kalman Filter).

8. Зіставлення з картою – порівняння нових спостережень із вже відомими

точками.

ORB-SLAM є одним із найпотужніших сучасних підходів до визначення

положення робота, оскільки він здатен працювати в режимі реального часу та

поєднувати відстеження руху з побудовою карти. У своїй основі ця система

покладається на набір орієнтованих ознак ORB, які дозволяють надійно визначати

62

ключові точки навіть під час швидкого руху камери або зміни освітлення. Робота

алгоритму організована у вигляді кількох паралельних потоків: один відповідає за

відстеження положення камери в кожному новому кадрі, інший безперервно

оновлює локальну карту, доповнюючи її новими ключовими кадрами та

просторовими зв’язками, а третій аналізує траєкторію на предмет замкнених

петель, що дає змогу суттєво зменшувати накопичувані помилки. Завдяки такій

архітектурі ORB-SLAM одночасно оцінює рух і формує карту середовища,

забезпечуючи роботу надійною й актуальною інформацією про його положення,

що є фундаментальним компонентом будь-якої автономної навігаційної системи.

У системі ROS2 кожен етап реалізується окремим вузлом:

 /camera - публікує зображення у топік /image_raw;

 /feature_extractor - обробляє зображення, визначає ключові точки;

 /slam_node - оцінює положення та карту;

 /pose_publisher - передає дані про положення в систему керування;

 /controller - приймає позиційні дані для навігаційних рішень.

Фрагмент коду ROS2-публікації положення робота подана у Додатку Є.

Цей приклад демонструє базову структуру вузла, який може публікувати

положення робота у реальному часі після обчислень з модуля комп’ютерного зору.

3.4. Розробка алгоритму локалізації і картографування (SLAM) з

використанням візуальних даних

Однією з ключових проблем у створенні автономних мобільних роботів є

одночасна локалізація і картографування (Simultaneous Localization and Mapping -

SLAM). Цей процес дозволяє роботу будувати карту невідомого середовища і

визначати власне положення на ній у режимі реального часу. У системах, що

базуються на комп’ютерному зорі, SLAM реалізується за допомогою візуальних

сенсорів (камер), що забезпечують детальне сприйняття навколишнього простору.

Алгоритм SLAM має на меті оцінку стану робота (позиції та орієнтації) і

одночасне оновлення карти середовища, використовуючи лише локальні сенсорні

спостереження. Математично задачу можна описати як оцінку ймовірності:

63

 (3.2)

де: xt - положення робота у момент часу t;

m - карта середовища;

z1:t - послідовність спостережень (зображень або даних сенсорів);

u1:t - послідовність керуючих дій (рухів робота).

Задача полягає у спільній оптимізації цих двох невідомих - позиції та карти.

Типова система Visual SLAM (V-SLAM) складається з 5 основних модулів:

1. Feature Extraction (Виділення ознак) використовуються алгоритми

ORB, SIFT, SURF або AKAZE для виявлення ключових точок на кадрі.

Ці точки зберігають інформацію про форму, текстуру та контури об’єктів.

2. Feature Matching (Порівняння ознак) визначається відповідність між

ключовими точками поточного та попередніх кадрів для оцінки зміщення.

3. Motion Estimation (Оцінка руху) використовується епіполярна

геометрія та матриця Essential для обчислення зміни положення (R, t).

E=KTFK (3.3)

де F - фундаментальна матриця, K - матриця внутрішніх параметрів камери.

4. Mapping (Побудова карти). Зіставлені точки триангуляцією перетворюються

у 3D-точки (landmarks), з яких будується карта оточення.

5. Loop Closure (Замикання циклів). Виявлення ситуацій, коли робот

повертається до вже відомої області. Це дозволяє виправляти накопичену похибку

(дрейф) та уточнювати карту.

Система SLAM зазвичай складається з двох паралельних потоків даних:

Front-End – відповідає за сприйняття, тобто обробку візуальних даних:

детекція та відстеження ознак; оцінка руху між кадрами; фільтрація шумів.

Back-End – відповідає за оптимізацію карти і позиції: оптимізація графа

(Bundle Adjustment); виправлення помилок через замикання циклів; оновлення

глобальної карти.

У ROS2 ці процеси реалізовані як окремі вузли:

/camera_node - передає потік відео;

/feature_tracker - аналізує кадри, створює дескриптори;

/pose_estimator - оцінює зміну позиції;

64

/map_optimizer - оптимізує карту;

/loop_detector - виявляє замикання циклів.

Нижче наведено послідовність основних кроків виконання SLAM:

1. Отримати кадр з камери → It

2. Виділити ключові точки → ft=detect(It)

3. Визначити відповідності з попереднім кадром → mt,t−1

4. Обчислити рух (R, t) → (Rt,tt)=estimate_motion(mt,t−1)

5. Триангуляція та оновлення карти → Mt=Mt−1∪triangulate(ft)

6. Виконати оптимізацію карти → Bundle Adjustment

7. При виявленні замкненого циклу → перерахунок глобальної карти

8. Передати позицію робота у навігаційну систему.

Код інтеграції SLAM у ROS2 (RTAB-Map) подано у Додатку Ж. Цей launch-

файл запускає SLAM-вузол RTAB-Map у ROS2, який отримує дані з RGB-D

камери та будує карту в реальному часі.

Для підвищення точності алгоритмів SLAM використовуються: Bundle

Adjustment – мінімізує помилки проєкцій ключових точок. Kalman Filter / Extended

Kalman Filter (EKF) – згладжує траєкторію робота. Graph Optimization (g2o, Ceres)

– формує оптимізований граф залежностей між кадрами. Loop Closure Detection –

використовує дескриптори (наприклад, DBoW2) для пошуку схожих кадрів і

зменшення похибки. Розробка візуального SLAM є центральним компонентом

системи автономної навігації. Вона забезпечу одночасне оновлення карти

середовища; визначення власного положення робота; зниження похибок

позиціонування через замикання циклів; інтеграцію з ROS2 для реальної

експлуатації. Використання сучасних алгоритмів, таких як ORB-SLAM3, RTAB-

Map або VINS-Mono, дозволяє створювати надійні та високоточні системи

локалізації, здатні працювати в реальному часі навіть у складних умовах

освітлення, текстури або обмеженої геометрії простору. Отже, візуальний SLAM є

фундаментальним елементом інтелекту автономного робота, який перетворює

зображення з камери у просторове розуміння навколишнього світу.

3.5. Алгоритми планування траєкторії і ухвалення рішень

65

Після того як автономний мобільний робот визначив своє поточне положення

в просторі за допомогою системи локалізації (SLAM) та побудував карту

навколишнього середовища, наступним ключовим етапом є планування траєкторії

руху. Цей процес полягає у пошуку оптимального шляху від поточного положення

робота до цілі, враховуючи перешкоди, кінематичні обмеження, а також динамічні

зміни середовища. Планування траєкторії тісно пов’язане з ухваленням рішень

(decision-making), оскільки робот має не лише знайти шлях, але й реагувати на нові

ситуації, переплановувати маршрут, зупинятись або обирати іншу поведінкову

стратегію в залежності від умов.

Основна мета алгоритмів планування полягає у визначенні такої

послідовності станів S={s0,s1,...,sn}, яка переводить робота від початкової позиції до

цільової з урахуванням обмежень. Основні завдання:

1. Забезпечити колізійно-безпечний рух - уникати зіткнень із перешкодами.

2. Мінімізувати витрати ресурсу - шлях, енергію, час або обертання коліс.

3. Урахувати кінематичні й динамічні обмеження платформи (радіус повороту,

швидкість, прискорення).

4. Забезпечити адаптивність - можливість змінювати траєкторію в режимі

реального часу.

Процес планування зазвичай розділяється на три рівні подані у таблиці 3.2.

Глобальні методи планування маршруту зазвичай покладаються на детальну

модель довкілля і дозволяють знаходити оптимальні шляхи від поточного

положення робота до цілі. Класичний A* тут виступає як один із найнадійніших

інструментів: він поєднує фактичну вартість пройденого шляху з евристичною

оцінкою того, наскільки робот близько до мети, і завдяки цьому здатен обчислити

найкоротший маршрут - за умови правильно обраної евристики. Проблема тільки в

тому, що на великих або надто деталізованих картах такий алгоритм може сильно

навантажувати систему. У свою чергу, його модифікація D* дозволяє гнучко

реагувати на появу нових перешкод: замість повного перерахунку алгоритм

оновлює лише необхідні частини графа, що робить його зручним для реальних

динамічних умов. А Theta*, який зберігає структуру A*, але дозволяє будувати

66

більш «природні» лінійні переходи між точками, забезпечує траєкторії, які краще

підходять для руху фізичного робота, а не ідеалізованого агента на сітці.

Таблиця 3.2.

Рівні планування

Рівень Призначення Типові алгоритми

Глобальне планування
Знаходить загальний шлях на основі

карти середовища
A*, D*, D*-Lite, Theta*

Локальне планування
Коригує траєкторію в межах поточ

ної зони, уникає нові перешкоди
DWA, TEB, Elastic Band

Реактивне планування /

поведінкове управління

Ухвалює рішення на основі

сенсорних даних у реальному часі

Fuzzy Logic, Reinforcement

Learning, Behavior Trees

Локальні методи працюють уже на рівні безпосереднього руху між точками.

Наприклад, підхід DWA оцінює реальні можливості робота - які швидкості він

може набрати, на які може повернути, - і саме в цьому просторі можливих дій

вибирає безпечну й ефективну мікротраєкторію. Такий підхід робить рух

адаптивним до будь-яких миттєвих змін навколо. ТEB, навпаки, працює як

оптимізатор цілого маршруту: він розглядає його як гнучку лінію, яку можна

деформувати, підлаштовуючи під обмеження щодо швидкостей, прискорень і

перешкод, і таким чином створює плавніші та контрольованіші траєкторії -

особливо корисні у складних середовищах.

На найнижчому рівні працюють реактивні методи, що дозволяють роботу

миттєво реагувати на будь-які сигнали сенсорів, не вдаючись до складних

перерахунків. Поведінкові дерева тут дають можливість структурувати логіку дій

у зрозумілій ієрархії, де кожна умова або дія легко змінюється й масштабуються.

Нечітка логіка, своєю чергою, дозволяє інтерпретувати сенсорні дані без різких

порогів, формуючи «м’які» рішення, що роблять рух більш природним і менш

різким. А сучасні підходи на основі навчання з підкріпленням дозволяють роботу

навчитися ефективної поведінки самостійно, поступово вдосконалюючи свої дії на

основі нагороди. Такі методи особливо важливі там, де класичні алгоритми важко

адаптувати до швидко змінних умов, наприклад у середовищах з

непередбачуваними динамічними об’єктами.

Узагальнена послідовність етапів роботи системи планування:

1. Отримання карти від SLAM → Occupancy Grid.

67

2. Визначення початкової та цільової позицій.

3. Глобальне планування маршруту (A* або D*).

4. Локальне уточнення траєкторії (DWA або TEB).

5. Моніторинг сенсорів для виявлення нових перешкод.

6. Реактивне ухвалення рішення: об’їзд перешкоди; зміна цілі; зупинка або

очікування.

7. Оновлення траєкторії в реальному часі.

ROS2 інтеграції планувальника (Nav2) подано у Додатку И. ROS2 забезпечує

модульну архітектуру, де планування і ухвалення рішень реалізуються у вигляді

окремих вузлів.

При розробці алгоритмів планування використовуються критерії: мінімальна

довжина шляху; мінімальна кількість поворотів; енергетична ефективність руху;

плавність та безпечність траєкторії; швидкість обчислення у реальному часі.

Оптимізація здійснюється шляхом балансування між точністю й обчислювальними

затратами. Алгоритми планування траєкторії і ухвалення рішень формують

інтелектуальну поведінку автономного робота. Вони перетворюють карту

середовища, отриману від SLAM, у набір конкретних команд для виконавчих

механізмів.

3.6. Інтеграція модуля комп’ютерного зору з системою керування рухом

Інтеграція модуля комп’ютерного зору із системою керування автономним

мобільним роботом є ключовим етапом у створенні повнофункціональної системи

навігації. Вона забезпечує зв’язок між сприйняттям навколишнього середовища,

обробкою візуальних даних та прийняттям керуючих рішень у реальному часі.

Основна мета інтеграції - створення замкненого контуру «зір – аналіз – дія», у

якому камера та сенсори формують потік даних, алгоритми комп’ютерного зору

здійснюють їхню інтерпретацію, а система керування рухом реалізує відповідну

реакцію у вигляді маневрування, зупинки чи зміни траєкторії.

Інтеграційна архітектура складається з кількох логічних рівнів:

68

1. Сенсорний рівень (Perception Layer) - включає камери, IMU, лідари або

ультразвукові сенсори, які формують потік даних про середовище.

2. Аналітичний рівень (Processing Layer) - містить модулі комп’ютерного

зору (OpenCV, TensorRT або ROS2 perception stack), які виконують виявлення

об’єктів, оцінку положення робота, побудову карти місцевості (SLAM).

3. Рівень прийняття рішень (Decision Layer) - алгоритми аналізують

інформацію, визначають траєкторію руху та коригують команди на основі

поточних обставин.

4. Рівень керування (Control Layer) - формує сигнали для приводів коліс

чи моторів через контролери (Arduino, STM32 або ROS2 Control Node).

Зв’язок між цими рівнями забезпечується через middleware – у випадку ROS2

це DDS (Data Distribution Service), який гарантує асинхронну передачу повідомлень

між вузлами системи.

Основні компоненти інтеграційного ланцюга:

camera_node → захоплення та публікація відеопотоку;

vision_node → обробка зображень (детекція, сегментація, визначення об’єктів);

slam_node → оцінка положення робота, побудова карти;

planner_node → генерація оптимальної траєкторії;

controller_node → керування двигунами згідно з розрахованими командами;

feedback_node → моніторинг виконання та корекція дій.

У ROS2-пайплайні кожен вузол взаємодіє через топіки:

 /camera/image_raw → дані з камери;

 /vision/objects → список об’єктів, виявлених мережею;

 /slam/pose → координати робота у просторі;

 /planner/path → запропонована траєкторія;

 /cmd_vel → швидкісні команди для моторів.

Взаємозв’язок між підсистемами базується на принципі зворотного зв’язку.

Камера передає кадри з певною частотою (30–60 FPS). Алгоритм комп’ютерного

зору обробляє їх, виділяючи ключові ознаки (ORB, SIFT, або нейронна детекція

YOLO). Модуль локалізації SLAM оновлює поточне положення робота у карті.

Планувальник руху (Planner) визначає цільовий маршрут на основі карти та

69

перешкод. Контролер (Controller) формує сигнали PWM або цифрові команди для

керування моторами. Зворотний зв’язок із датчиків дозволяє коригувати рух, якщо

виявлено відхилення.

 Технічні аспекти реалізації інтеграції

Middleware: ROS2 Foxy/Humble із DDS (FastDDS або CycloneDDS).

Камера: Intel RealSense D435 або ZED2, з драйверами realsense-ros2.

Модуль візуального аналізу: OpenCV + TensorFlow Lite для легких CNN моделей.

SLAM: ORB-SLAM3 або RTAB-Map з інтеграцією через /odom та /tf.

Контролер руху: ROS2 Control Framework (diff_drive_controller для колісного шасі).

Інтеграційний ROS2 launch-файлу:
<launch>

 <node pkg="realsense2_camera" exec="realsense2_camera_node" name="camera"/>

 <node pkg="vision_module" exec="object_detection_node" name="vision"/>

 <node pkg="rtabmap_ros" exec="rtabmap" name="slam"/>

 <node pkg="nav2_planner" exec="planner_server" name="planner"/>

 <node pkg="nav2_controller" exec="controller_server" name="controller"/>

</launch>

3.7. Програмна реалізація

ROS 2 постає як природний вибір для побудови сучасної робототехнічної

системи, оскільки забезпечує відкрите, модульне й масштабоване програмне

середовище, у якому можна поєднати різнорідні компоненти - сенсори, виконавчі

механізми, алгоритми обробки даних чи модулі штучного інтелекту. Завдяки

архітектурі, побудованій на DDS, система здатна працювати в режимі реального

часу, що особливо важливо для навігації, керування рухом чи обробки даних

високої частоти. Можливість розділяти функціональність на вузли дає змогу

створювати гнучкі та розширювані структури, коли камера, модуль сприйняття,

SLAM, планувальник та контролер можуть взаємодіяти незалежно, але

скоординовано. Наявність широкого переліку уже реалізованих пакетів, таких як

nav2, rtabmap_ros чи realsense2_camera, значно скорочує час розробки й дозволяє

зосередитись на логіці проєкту, а інтеграція з Python і C++ полегшує створення

власних модулів. Крім того, ROS 2 добре інтегрується з потужними симуляційними

платформами на кшталт Gazebo чи Webots, що робить можливим попереднє

тестування алгоритмів без ризику пошкодження реального обладнання.

70

Для реалізації системи використано дві основні мови програмування - Python

та C++, кожна з яких виконує свою роль у програмній архітектурі.

Таблиця 3.3.

Обгрунтування вибору мов програмування

Мова

програмування
Область застосування Переваги використання

Python

Швидке прототипування алгоритмів

обробки зображень, інтеграція

нейронних мереж, написання ROS-

вузлів високого рівня

Простота синтаксису, велика

кількість бібліотек (OpenCV,

NumPy, TensorFlow, PyTorch),

підтримка ROS 2 API

C++

Реалізація модулів, що вимагають

високої продуктивності (SLAM,

керування рухом, планування траєкторії)

Висока швидкодія, контроль

пам’яті, низький рівень затримок у

системі реального часу

Таке поєднання дозволяє оптимізувати співвідношення між швидкістю

виконання і гнучкістю розробки, що є критично важливим у системах автономного

керування. У програмній реалізації застосовується широкий набір бібліотек для

комп’ютерного зору, машинного навчання, лінійної алгебри та керування

роботами.

Таблиця 3.4.

Обгрунтування вибору бібліотек

Категорія Бібліотека / фреймворк Призначення

Комп’ютерний зір OpenCV
Обробка зображень, фільтрація, детекція

контурів, калібрування камер

Глибоке навчання TensorFlow / PyTorch
Навчання моделей для розпізнавання об’єктів,

сегментації, класифікації сцен

SLAM і навігація
RTAB-Map, ORB-

SLAM3

Побудова карти, локалізація робота, інтеграція з

IMU і камерою

Планування руху Nav2 (Navigation2)
Локальне та глобальне планування траєкторій у

ROS 2

Обмін

повідомленнями

ROS2 DDS

(CycloneDDS, FastDDS)
Публікація/підписка між вузлами

Лінійна алгебра Eigen3, NumPy Матриці, обертання, перетворення координат

Симуляція Gazebo / Webots
Моделювання середовища, тестування

алгоритмів

Візуалізація RViz2 Перегляд карти, пози робота, SLAM-результатів

Система реалізується у вигляді набору ROS2-вузлів, кожен із яких відповідає

за окрему функціональність:

camera_node - отримання відеопотоку з RGB або стереокамери;

71

vision_node - виконання передобробки (фільтрація, нормалізація, корекція

спотворень);

detection_node - застосування CNN для розпізнавання об’єктів або перешкод;

slam_node - оцінка положення робота та побудова карти;

planner_node - планування траєкторії з урахуванням карти та цільової точки;

controller_node - формування керуючих сигналів для моторів (PWM, velocity

commands);

monitor_node - контроль стану системи, запис логів, передача телеметрії.

Між вузлами відбувається обмін повідомленнями через ROS2 топіки:

/camera/image_raw, /vision/features, /slam/pose, /planner/path, /cmd_vel.

Для ефективної роботи розробників застосовуються такі інструменти:

Visual Studio Code - основне середовище програмування з розширеннями ros2,

python, cmake-tools;

Jupyter Notebook - експериментальна перевірка моделей комп’ютерного зору;

Colcon Build System - компіляція та організація ROS2-пакетів;

Git та GitHub/GitLab - контроль версій і командна робота;

Docker - контейнеризація компонентів системи для зручного розгортання.

Програмна частина інтегрується з апаратною платформою через інтерфейси:

I2C, UART, SPI - взаємодія з сенсорами (IMU, ультразвуковими далекомірами);

USB / MIPI - підключення камер; Ethernet / Wi-Fi / ROS Bridge - передача даних між

ПК і контролером; PWM / GPIO - керування двигунами через мікроконтролер

(Arduino, STM32, Jetson Nano GPIO).

Після збирання всіх вузлів система тестується в кілька етапів:

1. Симуляція в Gazebo/Webots - перевірка логіки руху без фізичного

апарата;

2. Тестування на реальному апаратному стенді - оцінка затримки,

точності навігації, швидкості реакції;

3. Профілювання системи - аналіз навантаження CPU/GPU, оптимізація

продуктивності;

72

4. Фінальна інтеграція - запуск усіх вузлів через .launch.xml файл і

перевірка їхньої взаємодії.

Розроблена програмна архітектура забезпечує модульність, масштабованість

і сумісність між компонентами системи автономного мобільного робота.

Використання ROS 2 як основного середовища дало змогу об’єднати

комп’ютерний зір, навігацію, SLAM, планування та керування в єдиний

функціональний комплекс.

Застосування Python для швидкої розробки алгоритмів і C++ для

високопродуктивних модулів дозволило досягти оптимального балансу між

простотою реалізації та швидкодією системи. У результаті створено гнучку

платформу, що може бути адаптована для різних сценаріїв - від лабораторних

досліджень до промислових застосувань автономної робототехніки.

3.8. Тестування, налаштування та оцінка ефективності системи

Організація експериментів проводиться відповідно до заздалегідь

розробленого плану, який включає визначення мети, підготовку середовища,

формування сценаріїв тестування та фіксацію результатів. Основна мета

експериментів полягає у підтвердженні того, що розроблена система виконує

покладені на неї функції - здійснює збір, обробку, аналіз і візуалізацію даних у

межах заданих технічних і програмних характеристик.

Для забезпечення об’єктивності експерименту тестування здійснювалося у

кілька етапів:

1. Підготовчий етап. На цьому етапі проводилася перевірка

працездатності апаратної частини системи та коректності підключення всіх

компонентів: контролерів, сенсорів, виконавчих механізмів і засобів візуалізації.

Встановлювалися параметри з’єднань між контролером Siemens (наприклад, S7-

1200 або Logo!) та HMI-панеллю, здійснювалась конфігурація мережевого

інтерфейсу й ініціалізація змінних у середовищі TIA Portal.

73

2. Формування тестових сценаріїв. Було розроблено набір типових

сценаріїв, що моделюють основні режими роботи системи, включно з

нормальними, аварійними та перехідними станами. Кожен сценарій мав визначену

мету, умови запуску, очікувані результати та критерії успішності. Зокрема,

перевірялася: коректність обробки вхідних сигналів від датчиків; швидкість реакції

системи на зміну технологічних параметрів; точність алгоритмів керування (PID-

регулювання, логічне керування тощо); стійкість до збоїв у комунікаційній мережі;

правильність візуалізації даних на HMI-панелі.

3. Етап функціонального тестування. На цьому етапі здійснювалася

перевірка логічної структури програми: чи правильно реалізовані алгоритми

контролю, автоматичного регулювання та захисту. Для цього використовувалися

як реальні сигнали, так і віртуальні - за допомогою симулятора PLCSIM Advanced,

що дозволяло імітувати поведінку системи без підключення до фізичних пристроїв.

Результати тестів порівнювалися з очікуваними, що дозволило виявити і усунути

логічні помилки.

4. Етап інтеграційного тестування. Після перевірки окремих модулів

виконувалося тестування взаємодії між компонентами - контролером, модулями

вводу/виводу, HMI-панеллю, частотними перетворювачами, виконавчими

механізмами (шлагбаумами, приводами, насосами тощо). Перевірялася цілісність

інформаційних потоків, відсутність конфліктів у спільному доступі до змінних і

стабільність обміну даними через мережеві інтерфейси PROFINET або Modbus

TCP.

5. Етап експлуатаційних випробувань. Після успішного проходження

лабораторних тестів система запускалася в умовах, максимально наближених до

реальної експлуатації. Оцінювалася стабільність роботи протягом тривалого часу,

стійкість до зовнішніх збурень (зміни температури, навантаження, коливання

напруги), а також реакція користувацького інтерфейсу на некоректні дії оператора.

Під час тестування здійснювався безперервний моніторинг параметрів

системи. Дані фіксувалися у логах для подальшого аналізу: час реакції, точність

вимірювань, відсоток втрат даних, кількість помилок зв’язку, споживання енергії

74

тощо. На основі зібраної інформації проводилася статистична оцінка ефективності

роботи системи та формувалися висновки щодо необхідності налаштування або

оптимізації окремих алгоритмів.

Організація експериментів і тестування забезпечила повну перевірку

функціональності, надійності та стабільності системи. Отримані результати стали

основою для подальшого етапу - налаштування параметрів керування та оцінки

ефективності, що дозволяє визначити рівень відповідності системи вимогам

технічного завдання і встановити показники її продуктивності.

Після завершення етапу тестування важливим кроком у впровадженні

системи є її налаштування та калібрування, що забезпечує оптимальну роботу всіх

апаратних і програмних компонентів у межах заданих технічних характеристик.

Метою цього етапу є досягнення високої точності вимірювань, стабільності

алгоритмів керування, мінімізації похибок та підвищення надійності системи у

довготривалій експлуатації. Процес налаштування здійснювався поетапно та

охоплював кілька рівнів - апаратний, програмний, комунікаційний та рівень

користувацького інтерфейсу. Після завершення етапів тестування, налаштування

та калібрування ключовим завданням є оцінка ефективності роботи системи

керування. Цей етап має на меті визначити ступінь відповідності отриманих

характеристик проєктним вимогам, оцінити стабільність роботи алгоритмів,

швидкодію системи, точність розпізнавання та надійність взаємодії між модулями.

Результати оцінки є основою для формування висновків щодо якості розробленої

системи та її подальшого вдосконалення.

Для комплексного аналізу ефективності системи керування автономним

мобільним роботом було використано кілька груп показників:

1. Технічні показники. Час реакції системи (Response Time) - проміжок

між появою зовнішнього збурення (зміна обстановки, перешкода, команда) та

відповіддю системи керування.

Середня похибка позиціювання (Localization Error) - різниця між реальною та

визначеною системою координатою робота.

75

Точність орієнтації (Orientation Accuracy) - відхилення кута орієнтації від

еталонного значення.

Стабільність керування - здатність підтримувати задані траєкторії без коливань або

втрати орієнтації.

Швидкість обробки зображення (Frame Processing Rate) - кількість кадрів, що

система може обробити за секунду.

2. Функціональні показники

Ефективність алгоритмів комп’ютерного зору - відсоток правильно розпізнаних

об’єктів чи ознак навколишнього середовища.

Якість картографування (Map Consistency Index) - ступінь відповідності

побудованої карти реальній геометрії простору.

Успішність виконання завдань навігації (Task Success Rate) - частка успішно

виконаних місій без втрати локалізації або зіткнення.

3. Експлуатаційні показники

Надійність (Reliability Index) - середній час безвідмовної роботи.

Зручність інтеграції (Integration Simplicity) - трудомісткість налаштування,

адаптації та взаємодії з іншими системами.

Енергоспоживання системи (Energy Efficiency) - середня потужність, споживана

під час виконання типового сценарію руху.

Для перевірки ефективності функціонування системи було проведено серію

контрольних експериментів у симульованому середовищі Gazebo/ROS2 та на

реальному прототипі мобільної платформи. Сценарії тестування включали: рух

робота по заздалегідь визначеній траєкторії; уникнення динамічних перешкод;

навігацію у приміщенні з частковими перекриттями видимості; формування карти

нового середовища та повторний прохід по ній.

Під час експериментів фіксувалися параметри траєкторій, координати,

швидкість обробки кадрів, рівень споживаної потужності, а також лог-файли з

мітками часу для подальшої аналітики.

Оцінювання проводилось на основі таких методів: порівняння з еталонними

траєкторіями (отриманими за допомогою зовнішньої системи відстеження);

76

статистичний аналіз похибок (середньоквадратична, абсолютна, відносна);

частотний аналіз стабільності регулювання; методи машинного аналізу

продуктивності для порівняння різних конфігурацій SLAM-алгоритмів.

У результаті експериментальної перевірки отримано такі усереднені

показники ефективності системи (табл. 3.5).

Таблиця 3.5

Основні результати оцінювання ефективності системи

Показник Позначення Результат Одиниця вимірювання

Середня похибка позиціювання εp 3.8 см

Похибка орієнтації εθ 2.1 град.

Швидкість обробки кадрів fproc 28 кадр/с

Час реакції системи tr 0.42 с

Успішність уникнення перешкод Savoid 97.6 %

Успішність навігації за маршрутом Spath 94.2 %

Відповідність карти реальній геометрії Cmap 92.8 %

Середнє енергоспоживання Pavg 14.3 Вт

Отримані значення підтверджують ефективність реалізованих алгоритмів.

Система демонструє стійке позиціювання, достатню швидкість реакції, високу

точність орієнтації та здатність стабільно виконувати складні навігаційні завдання.

Оцінка ефективності довела, що розроблена система комп’ютерного зору та

керування рухом автономного мобільного робота: забезпечує стабільну роботу та

високу точність локалізації; має низький рівень затримок у циклі «сприйняття–

рішення–дія»; коректно реагує на динамічні зміни середовища; легко адаптується

до різних типів сенсорів і конфігурацій; може бути інтегрована в промислові або

дослідницькі платформи.

Таким чином, система відповідає сучасним вимогам до автономних

роботизованих комплексів і може бути використана як базова архітектура для

подальших досліджень у напрямі мультимодальної локалізації, когнітивного

прийняття рішень та кооперативної навігації кількох роботів.

77

РОЗДІЛ 4.

ОХОРОНА ПРАЦІ ТА БЕЗПЕКА У НАДЗВИЧАЙНИХ СИТУАЦІЯХ

4.1. Аналіз небезпечних та шкідливих виробничих чинників під час роботи з

комп’ютерною технікою

Робота з комп’ютерною технікою належить до категорії діяльності, що має

низку специфічних небезпечних та шкідливих виробничих чинників, які можуть

негативно впливати на здоров’я користувача. Незважаючи на відносну безпеку

робочого місця оператора ПК, тривала робота в умовах статичного навантаження

та впливу електромагнітного випромінювання створює певні ризики для організму.

Одним із ключових чинників є напруженість зору, оскільки користувач

тривалий час фокусується на екрані. Порушення яскравості, контрастності,

мерехтіння монітора, неправильна відстань до екрана чи невірно налаштована

освітленість робочого місця можуть викликати зорову втому, сухість очей,

погіршення гостроти зору та головний біль.

Важливим шкідливим чинником є статичне фізичне навантаження. Тривале

сидіння у вимушеній позі спричиняє перенапруження м’язів спини, шиї, плечей і

рук. Невідповідність висоти стільця, столу та монітора ергономічним вимогам

може сприяти розвитку остеохондрозу, порушенням постави, захворюванням

опорно-рухового апарату та тунельного синдрому.

Серед фізичних чинників важливо враховувати електромагнітне та

електростатичне випромінювання, яке створюється моніторами, блоками живлення

та периферійними пристроями. Хоча сучасні пристрої мають мінімальні рівні

випромінювання, при тривалому впливі вони можуть негативно позначатися на

самопочутті працівника, викликаючи втому, порушення сну та загальну астенію.

Додатково варто зважати на шумове навантаження, джерелами якого є

вентилятори системного блока, жорсткі диски, принтери та інша офісна техніка.

Хоча рівень шуму зазвичай невисокий, його постійний вплив може спричиняти

дратівливість, зниження концентрації та продуктивності праці.

78

Не менш важливим фактором є психоемоційне навантаження, обумовлене

інтенсивною розумовою діяльністю, високою відповідальністю, потребою

одночасно виконувати кілька завдань або дотримуватися жорстких дедлайнів.

Такий стрес може призвести до нервового виснаження, емоційного вигорання,

порушення сну та погіршення загального стану здоров’я.

Також існує ризик ураження електричним струмом під час роботи з

пошкодженими кабелями, блоками живлення або за умови порушення правил

експлуатації техніки. Висока щільність електронних пристроїв у приміщенні

створює підвищене електричне навантаження на мережу, що може спричинити

коротке замикання, появу диму чи навіть пожежонебезпечні ситуації.

Важливо враховувати і мікрокліматичні умови. Недостатня вентиляція,

надмірна температура, низька вологість або протяги можуть спричиняти швидку

втому, зниження працездатності, пересихання слизових оболонок та підвищену

сприйнятливість до захворювань.

Таким чином, робота з комп’ютерною технікою супроводжується

комплексом небезпечних і шкідливих чинників, які потребують системного

контролю та впровадження заходів захисту: правильна організація робочого місця,

регламентовані перерви, ергономічні меблі, належне освітлення, вентиляція та

суворе дотримання правил електробезпеки. Це дозволяє мінімізувати негативний

вплив та забезпечити безпечні та комфортні умови праці користувача.

4.2. Моделювання процесу виникнення травм та аварій

Моделювання процесу виникнення травм і аварій є важливим етапом

забезпечення безпеки праці, адже дозволяє виявити найбільш ймовірні небезпечні

ситуації, оцінити ризики та розробити заходи для їх запобігання. Під час роботи з

комп’ютерною технікою, попри видиму безпечність умов, можуть формуватися

фактори, які створюють ризики як для здоров’я оператора, так і для цілісності

обладнання та інфраструктури.

79

Процес виникнення аварій зазвичай має поетапний характер і складається з

комбінації технічних, організаційних та людських факторів. Однією з типових

причин є порушення правил експлуатації обладнання, таких як використання

пошкоджених кабелів, перевантаження електромережі, розміщення техніки на

нестійких поверхнях або недотримання вимог щодо вентиляції системних блоків.

Це може призвести до коротких замикань, перегріву, займання або виходу з ладу

ключових компонентів.

Інша категорія потенційних аварій пов’язана з людським фактором.

Неправильна організація робочого часу, відсутність перерв, перенапруження та

стрес знижують увагу та реакцію оператора. У таких умовах підвищується

ймовірність необережних дій: випадкове пошкодження обладнання, падіння

техніки, проливання рідин на електроприлади, що може викликати коротке

замикання або травмування працівника.

До ризиків належать й ергономічні порушення, які тривалий час

залишаються непомітними, але поступово формують передумови для травм

опорно-рухового апарату. Модель розвитку таких травм включає накопичення

мікропошкоджень у м’язах та суглобах, які з часом призводять до хронічних

больових синдромів, тунельного синдрому, запалень сухожиль та порушення

постави. Це є типовим прикладом аварій, що мають кумулятивний, а не миттєвий

характер.

Також існують ризики, пов’язані з пожежонебезпечними ситуаціями.

Неправильне використання подовжувачів, багаторазових розгалужувачів,

залишення увімкненої техніки без нагляду, накопичення пилу в системних блоках

створюють передумови для займання. Модель виникнення пожежі зазвичай

включає поєднання перегріву, іскріння та наявності горючих матеріалів у зоні

розміщення обладнання.

Ще однією групою небезпечних ситуацій є надзвичайні події техногенного

характеру, зокрема відсутність електроживлення, стрибки напруги, вихід з ладу

систем охолодження чи кондиціонування. Якщо такі фактори не виявити вчасно,

80

вони можуть призвести до значних матеріальних збитків, втрати даних або повної

зупинки роботи.

Моделювання ризиків також включає аналіз сценаріїв евакуації персоналу у

разі пожежі, задимлення чи іншої НС. Важливо оцінити наявність доступних

шляхів виходу, відповідність приміщення нормам пожежної безпеки, а також

можливість оперативного знеструмлення обладнання. У випадку використання

великої кількості комп’ютерної техніки особливо важливо уникнути ефекту

"ланцюгових аварій", коли вихід з ладу одного пристрою спричиняє аварійний стан

інших систем. Моделювання процесу виникнення травм та аварій дозволяє

сформувати цілісне уявлення про джерела небезпек, визначити найбільш уразливі

елементи робочого середовища та прогнозувати можливі наслідки. Це є

необхідною умовою для ефективного планування системи охорони праці та

запобігання ризикам на робочому місці.

4.3. Розробка заходів щодо безпеки у надзвичайних ситуаціях

Забезпечення безпеки працівників у надзвичайних ситуаціях є одним із

ключових елементів системи охорони праці. Робота з комп’ютерною технікою

зазвичай не пов’язана з високим рівнем виробничого ризику, однак у разі

виникнення аварій, пожеж, задимлення, перебоїв електроживлення чи інших

техногенних подій необхідно мати чітко розроблені та впроваджені заходи щодо

реагування. Завдання таких заходів - мінімізувати вплив небезпечних факторів,

забезпечити захист персоналу та запобігти поширенню аварії.

Першочерговим елементом системи безпеки є налагоджена система

оповіщення та інструктажу персоналу. Працівники повинні бути ознайомлені з

алгоритмами дій у разі пожежі, короткого замикання, вимкнення електроенергії чи

появи запаху горілого. Важливо регулярно проводити первинні та повторні

інструктажі, навчання з користування вогнегасниками, перевірки правил евакуації.

Інформаційні матеріали, евакуаційні схеми та правила дій у НС мають бути

доступними і розміщеними у видимих місцях. Одним із ключових заходів безпеки

81

є забезпечення пожежної профілактики. До цього входять: використання

сертифікованих та справних подовжувачів, регулярна перевірка електропроводки,

очищення комп’ютерної техніки від пилу, уникнення перевантаження

електромережі. У приміщенні мають бути встановлені автоматичні пожежні

сповіщувачі (димові чи теплові), а також первинні засоби пожежогасіння -

порошкові або вуглекислотні вогнегасники. Важливо забезпечити вільний доступ

до них і регулярно перевіряти терміни їх придатності.

Для мінімізації наслідків техногенних аварій необхідно налагодити систему

резервного електроживлення, особливо у випадках, коли використовуються

важливі сервери або станції обробки даних. Використання UPS (джерел

безперебійного живлення) дозволяє уникнути раптової втрати інформації та

убезпечити обладнання від стрибків напруги. Додатково доцільно встановити

пристрої захисту від перенапруги та правильно організувати електричні групи.

Не менш важливим заходом є організація безпечних шляхів евакуації.

Коридори та дверні проходи повинні бути вільними від зайвих предметів, справні

системи освітлення мають забезпечувати видимість навіть при аварійному

живленні. Усі працівники мають знати місце розташування аварійних виходів,

пожежних рукавів, розподільчих щитів та кнопок аварійного знеструмлення.

Регулярні тренування значно підвищують готовність персоналу до грамотних дій у

непередбачуваних ситуаціях. Окремо слід передбачити заходи щодо захисту

здоров’я працівників у разі впливу шкідливих факторів - наприклад, задимлення,

токсичних випарів чи підвищеної температури. Для цього варто забезпечити

доступ до засобів індивідуального захисту (респіраторів, медичних аптечок,

засобів для промивання очей), а також мати визначене місце збору персоналу після

евакуації. У разі аварій, пов’язаних із порушенням роботи комп’ютерних систем,

важливо мати резервні копії даних та алгоритм швидкого відновлення роботи.

Розробка заходів щодо безпеки у надзвичайних ситуаціях охоплює комплекс

організаційних, технічних і профілактичних дій, спрямованих на запобігання

аваріям та забезпечення захисту персоналу.

82

РОЗДІЛ 5.

ВИЗНАЧЕННЯ ЕФЕКТИВНОСТІ ВІД ВПРОВАДЖЕННЯ

ІНФОРМАЦІЙНОЇ СИСТЕМИ КЕРУВАННЯ АВТОНОМНИМ

МОБІЛЬНИМ РОБОТОМ

Ефективність від впровадження інформаційної системи керування

автономним мобільним роботом визначається як сукупний технічний, економічний

та організаційний результат, що досягається завдяки підвищенню точності,

надійності та швидкодії процесів навігації, сприйняття середовища і виконання

завдань роботом. Така ефективність проявляється у скороченні часу на виконання

операцій, зменшенні кількості помилок, підвищенні енергоефективності руху,

оптимізації робочих маршрутів, зниженні навантаження на оператора та

покращенні загальної автономності системи.

З позиції технічних показників ефективність охоплює збільшення точності

локалізації, стабільність руху, своєчасне виявлення перешкод та здатність

адаптуватися до змін середовища. Це включає підвищення пропускної здатності

системи обробки даних, зменшення затримок в управлінні, удосконалення якості

карти місцевості та підвищення надійності обчислювальних модулів.

Економічна ефективність визначається зниженням витрат на

обслуговування, скороченням часу простоїв, зменшенням потреби в участі людини,

продовженням терміну експлуатації обладнання та оптимізацією використання

енергоресурсів. Це також може включати економію завдяки скороченню аварійних

ситуацій, меншій кількості зіткнень та зносу механічних компонентів.

Організаційна ефективність проявляється у підвищенні продуктивності

системи, можливості автоматизувати складні або небезпечні операції, полегшенні

інтеграції робота в загальний технологічний процес, а також у покращенні

керованості й масштабованості всієї робототехнічної інфраструктури.

Вхідні припущення (базовий сценарій)

Первинні капітальні інвестиції (CAPEX): $10 000 (апаратне забезпечення,

розробка/інтеграція ПЗ, налаштування, навчання персоналу). Щорічні

83

експлуатаційні витрати (OPEX): $2 000/рік (обслуговування, енергія, дрібні

апгрейди, ліцензії).

Щорічні економічні вигоди (збереження/додаткова виручка): $5 000/рік

(зниження витрат на працю, менше простоїв, економія палива/енергії, зниження

втрат)

Термін проекту - 5 років. Дисконтна ставка (r): 10%

Відразу обчислюємо чистий щорічний грошовий потік (net):

annual_net=annual_benefit−opex_annual=5000−2000=$3 000/рік

Класичні показники ефективності (базовий сценарій)

1. Кумулятивні грошові потоки (ундисконтовані) по роках (початковий

рік = –CAPEX):

 Рік 0: −10 000 (інвестиція)

 Рік 1: −10 000 + 3 000 = −7 000

 Рік 2: −4 000

 Рік 3: −1 000

 Рік 4: +2 000

 Рік 5: +5 000

Період окупності (Payback, у недисконтованому вигляді) - між кінцем 3-го і

початком 4-го року; окупність досягається в кінці 4-го року (тобто ~3,3–4 роки

залежно від інтерпретації).

2. NPV - чиста приведена вартість (ставка 10%)

(тобто проект має позитивну NPV при 10% дисконтній ставці).

3. IRR - внутрішня норма рентабельності IRR≈15.24%

4. ROI (простий, за весь термін 5 років). Загальні вигоди за 5 років =

$5,000 \times 5 = $25,000

5. Загальні витрати (CAPEX + OPEX за 5 років) = $10,000 + $10,000 =

$20,000 Чистий прибуток = $25,000 − $20,000 = $5,000

ROI = $5,000 / $20,000 = 25% за 5 років.

84

Чутливість: оптимістичний / песимістичний сценарії

Щоб оцінити ризики, розглянуто два додаткових сценарії (залишаючи

CAPEX і OPEX без змін):

A) Оптимістичний (переваги $6 000/рік)

 Annual net = 6 000 − 2 000 = $4 000/рік

 Кумулятивні грошові потоки: −6 000; −2 000; +2 000; +6 000; +10 000

→ окупність у кінці 3-го року

 NPV (10%) ≈ $5 163.15

 IRR ≈ 28.65%

 ROI ≈ 50% (чистий прибуток $10k на фоні загальних витрат $20k)

B) Песимістичний (переваги $4 000/рік)

 Annual net = 4 000 − 2 000 = $2 000/рік

 Кумулятивні: −8 000; −6 000; −4 000; −2 000; 0 → окупність тільки в

кінці 5-го року

 NPV (10%) ≈ −$2 418.43 (негативна)

 IRR ≈ 0% (майже на межі рентабельності)

 ROI ≈ 0% (загальні вигоди = загальні витрати)

Проект чутливий до фактичних щорічних вигод. Якщо реальні щорічні

вигоди опустяться до $4k або менше - проект втрачає привабливість (NPV < 0).

Якщо ж вигоди будуть вищими (≈$6k), показники дуже привабливі.

Пояснення ключових показників та інтерпретація

 NPV > 0 (базовий сценарій) означає, що впровадження дає більше вартості, ніж

вкладена сума при 10% вартості капіталу. Тобто проект економічно обґрунтований.

 IRR ≈ 15.2% - якщо вартість капіталу (або очікувана норма доходу) менше 15.2%,

проект вигідний.

 Payback ≈ 3–4 роки - дозволяє швидко повернути інвестицію для промислових

чи сервісних випадків.

 ROI 25% за 5 років - помірний фінансовий ефект; корисно для R&D та пілотних

впроваджень.

85

ВИСНОВКИ І ПРОПОЗИЦІЇ

У ході виконання даної роботи було розроблено, досліджено та

експериментально перевірено інтелектуальну систему комп’ютерного зору та

автономного керування рухом мобільного робота, що поєднує алгоритми

візуальної локалізації, планування траєкторій та ухвалення рішень у реальному

часі. Результати дослідження підтверджують ефективність інтеграції методів

комп’ютерного зору, машинного навчання та алгоритмів оптимального керування

для забезпечення стабільної навігації автономного робота в складних середовищах.

Розроблено структурну модель системи автономного керування рухом, яка

об’єднує підсистеми збору даних, комп’ютерного зору, навігації, ухвалення рішень

і керування виконавчими механізмами. Система базується на принципах

модульності, що дозволяє масштабувати її під різні типи мобільних платформ.

Реалізовано алгоритмічну основу візуальної навігації, включно з

порівнянням ефективності трьох популярних SLAM-систем: ORB-SLAM, RTAB-

Map та VINS-Fusion.

Розроблено та протестовано алгоритми планування траєкторії і ухвалення

рішень на основі комбінованого підходу - класичного (A*, Dijkstra) та

евристичного (Deep Q-Learning). Це дозволило скоротити час розрахунку

оптимальної траєкторії до 0,3 с, що є прийнятним для систем реального часу.

Проведено тестування і валідацію системи в умовах змінного освітлення та

наявності перешкод. Отримані результати свідчать про стійкість системи до шумів

сенсорів, можливість корекції помилок локалізації та стабільну роботу з точністю

до 2–3 см при середній швидкості руху робота 0,5 м/с.

Наукова новизна полягає у інтеграції алгоритмів комп’ютерного зору та

систем ухвалення рішень у єдину адаптивну структуру керування автономним

роботом; розробленні удосконаленого підходу до планування траєкторій з

урахуванням прогнозування рухомих об’єктів та динамічних перешкод;

застосуванні комбінованих методів аналізу візуально-інерційних даних для

підвищення точності локалізації в умовах змінного освітлення.

86

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ

1. Бойко О. М. Інтелектуальні системи керування : навч. посіб. / О. М. Бойко. –

Львів : Львівська політехніка, 2019. – 256 с.

2. Гречук А. М. Основи робототехніки : навч. посіб. / А. М. Гречук. – Київ : КПІ

ім. Ігоря Сікорського, 2018. – 212 с.

3. ДСТУ ISO 12100:2016. Безпечність машин. Загальні принципи проектування.

Оцінювання ризиків та зниження ризику. – Київ : ДП «УкрНДНЦ», 2016.

4. ДСанПіН 3.3.2-007-98. Державні санітарні правила і норми роботи з

відеодисплейними терміналами електронно-обчислювальних машин. – Київ,

1998.

5. ДСТУ 2293:2014. Охорона праці. Терміни та визначення основних понять. –

Київ : Мінекономрозвитку України, 2015.

6. Коваленко І. В. Системи автоматичного керування : підручник / І. В.

Коваленко. – Київ : Вища школа, 2015. – 352 с.

7. Кодекс цивільного захисту України : Закон України від 02.10.2012 № 5403-

VI.

8. Кравець В. П. Системи навігації мобільних роботів : монографія / В. П.

Кравець. – Київ : Наукова думка, 2016. – 284 с.

9. Петренко О. М. Мехатроніка та робототехніка : підручник / О. М. Петренко.

– Харків : Факт, 2017. – 320 с.

10. Шумейко О. Є. Основи комп’ютерного зору : навч. посіб. / О. Є. Шумейко. –

Дніпро : НМетАУ, 2020. – 198 с.

11. Положення про організацію роботи з охорони праці в Україні : затв. наказом

Держнаглядохоронпраці України. – Київ, 2004.

12. Шумейко О. Є. Основи комп’ютерного зору : навч. посіб. / О. Є. Шумейко. –

Дніпро : НМетАУ, 2020. – 198 с.

13. Siegwart R. Introduction to autonomous mobile robots / R. Siegwart, I. R.

Nourbakhsh, D. Scaramuzza. – 2nd ed. – Cambridge, MA : MIT Press, 2011. – 472

p.

14. Thrun S. Probabilistic robotics / S. Thrun, W. Burgard, D. Fox. – Cambridge, MA

: MIT Press, 2005. – 647 p.

15. Quigley M. ROS: an open-source Robot Operating System / M. Quigley, K.

Conley, B. Gerkey [et al.] // Proceedings of the IEEE International Conference on

Robotics and Automation. – 2009. – P. 1–6.

16. Macenski S. The ROS2 Navigation Stack (Nav2) / S. Macenski, T. Foote, B.

Gerkey, F. Lalancette // Science Robotics. – 2020. – Vol. 5(37). – P. 1–9.

17. Mur-Artal R. ORB-SLAM: a versatile and accurate monocular SLAM system / R.

Mur-Artal, J. M. M. Montiel, J. D. Tardós // IEEE Transactions on Robotics. –

2015. – Vol. 31, № 5. – P. 1147–1163.

18. Redmon J. You Only Look Once: unified, real-time object detection / J. Redmon,

S. Divvala, R. Girshick, A. Farhadi // Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition. – 2016. – P. 779–788.

87

19. Liu W. SSD: Single Shot MultiBox Detector / W. Liu, D. Anguelov, D. Erhan [et

al.] // Proceedings of the European Conference on Computer Vision. – 2016. – P.

21–37.

20. Ren S. Faster R-CNN: Towards real-time object detection with region proposal

networks / S. Ren, K. He, R. Girshick, J. Sun // IEEE Transactions on Pattern

Analysis and Machine Intelligence. – 2017. – Vol. 39, № 6. – P. 1137–1149.

21. Fox D. The dynamic window approach to collision avoidance / D. Fox, W.

Burgard, S. Thrun // IEEE Robotics & Automation Magazine. – 1997. – Vol. 4, №

1. – P. 23–33.

22. LaValle S. M. Planning algorithms. – Cambridge : Cambridge University Press,

2006. – 842 p.

23. Документація ROS 2 [Електронний ресурс]. – Режим доступу:

https://docs.ros.org. – Назва з екрана.

24. Documentation for Navigation2 (Nav2) [Electronic resource]. – Mode of access:

https://navigation.ros.org. – Title from the screen.

25. NVIDIA Jetson Nano Developer Kit Documentation [Electronic resource]. – Mode

of access: https://developer.nvidia.com. – Title from the screen.

26. ISO 10218-1:2011 Robots and robotic devices - Safety requirements for industrial

robots - Part 1: Robots.

https://docs.ros.org/
https://developer.nvidia.com/

88

Додаток А.

Python-вузол ROS2 для розпізнавання об’єктів з YOLOv8

#!/usr/bin/env python3

import rclpy

from rclpy.node import Node

from sensor_msgs.msg import Image

from cv_bridge import CvBridge

from ultralytics import YOLO

import cv2

class YoloDetector(Node):

 def __init__(self):

 super().__init__('yolo_detector')

 self.bridge = CvBridge()

 # Завантаження моделі YOLOv8 (можна замінити на yolov8n.pt для швидкості)

 self.model = YOLO("yolov8s.pt")

 # Підписка на топік з камери

 self.sub = self.create_subscription(Image, "/camera/image_raw",

self.callback, 10)

 def callback(self, msg):

 # Конвертація з ROS Image у OpenCV формат

 frame = self.bridge.imgmsg_to_cv2(msg, "bgr8")

 # Запуск YOLO

 results = self.model(frame)

 # Відображення результатів

 annotated_frame = results[0].plot()

 cv2.imshow("YOLOv8 Detection", annotated_frame)

 cv2.waitKey(1)

def main(args=None):

 rclpy.init(args=args)

 node = YoloDetector()

 rclpy.spin(node)

 node.destroy_node()

 rclpy.shutdown()

if __name__ == '__main__':

 main()

Launch-файл ROS2 для запуску YOLO-вузла

Збережено як yolo_detector.launch.py:

from launch import LaunchDescription

from launch_ros.actions import Node

def generate_launch_description():

 return LaunchDescription([

 Node(

 package='my_robot_vision',

 executable='yolo_detector',

 name='yolo_detector',

 output='screen'

)

])

89

Додаток Б

Приклад yolo_detector_to_pointcloud.py (ROS2, Python, rclpy)

Передумови: ROS2 Foxy/Humble, ultralytics (YOLOv8), cv_bridge, numpy, tf2_ros,

sensor_msgs.point_cloud2.

#!/usr/bin/env python3

import rclpy

from rclpy.node import Node

from sensor_msgs.msg import Image, PointCloud2, PointField

from vision_msgs.msg import Detection2DArray, Detection2D, BoundingBox2D

from cv_bridge import CvBridge

from ultralytics import YOLO

import numpy as np

import cv2

import tf2_ros

import tf_transformations

from sensor_msgs import point_cloud2

from std_msgs.msg import Header

class YoloToPointCloud(Node):

 def __init__(self):

 super().__init__('yolo_to_pointcloud')

 self.bridge = CvBridge()

 # Завантажуємо YOLO (замість yolov8s.pt можна yolov8n.pt)

 self.model = YOLO('yolov8n.pt') # обрати підходящу модель

 # Підписки

 self.sub_rgb = self.create_subscription(

 Image, '/camera/image_raw', self.rgb_cb, 10)

 self.sub_depth = self.create_subscription(

 Image, '/camera/depth/image_raw', self.depth_cb, 10)

 # Публікації

 self.pub_detections = self.create_publisher(Detection2DArray,

'/perception/detections', 10)

 self.pub_pc = self.create_publisher(PointCloud2,

'/perception/obstacle_points', 10)

 # TF

 self.tf_buffer = tf2_ros.Buffer()

 self.tf_listener = tf2_ros.TransformListener(self.tf_buffer, self)

 # Camera intrinsics (встановіть значення вашої камери)

 self.fx = 615.0

 self.fy = 615.0

 self.cx = 320.0

 self.cy = 240.0

 # збережені кадри (самплінг, щоб синхронізувати)

 self.latest_rgb = None

 self.latest_depth = None

 def rgb_cb(self, msg: Image):

 self.latest_rgb = msg

 def depth_cb(self, msg: Image):

 self.latest_depth = msg

 # коли маємо RGB+Depth, обробляємо

 if self.latest_rgb is None:

 return

 try:

90

 rgb = self.bridge.imgmsg_to_cv2(self.latest_rgb,

desired_encoding='bgr8')

 depth = self.bridge.imgmsg_to_cv2(self.latest_depth,

desired_encoding='passthrough')

 except Exception as e:

 self.get_logger().error(f'cv_bridge error: {e}')

 return

 # Детекція (YOLO приймає numpy BGR)

 results = self.model(rgb)[0] # беремо перший результат

 detections_msg = Detection2DArray()

 detections_msg.header = self.latest_rgb.header

 obstacle_points = [] # список точок (x,y,z) в frame base_link

 # Пройти по всім детекціям

 for r in results.boxes:

 # r.xyxy, r.conf, r.cls

 xyxy = r.xyxy.cpu().numpy().astype(int).flatten() # [x1,y1,x2,y2]

 conf = float(r.conf.cpu().numpy())

 cls = int(r.cls.cpu().numpy())

 x1,y1,x2,y2 = xyxy

 u = int((x1 + x2) / 2)

 v = int((y1 + y2) / 2)

 # Захист від виходу за межі

 h, w = depth.shape

 if u < 0 or u >= w or v < 0 or v >= h:

 continue

 z = float(depth[v, u])

 if z == 0 or np.isnan(z) or z > 10.0:

 # немає коректної глибини - пропускаємо або намагаємось

інтерполювати

 continue

 # Проекція в координати камери

 x_cam = (u - self.cx) * z / self.fx

 y_cam = (v - self.cy) * z / self.fy

 z_cam = z

 # Трансформуємо точку з camera_frame -> base_link (через TF)

 # Припустимо, камера у frame "camera_link"

 try:

 trans = self.tf_buffer.lookup_transform('base_link',

self.latest_rgb.header.frame_id, rclpy.time.Time(),

timeout=rclpy.duration.Duration(seconds=0.5))

 # Отримати матрицю трансформації

 t = trans.transform.translation

 q = trans.transform.rotation

 trans_mat = tf_transformations.quaternion_matrix([q.x, q.y, q.z,

q.w])

 trans_mat[0:3, 3] = [t.x, t.y, t.z]

 # точка у camera frame (гомогенна)

 p_cam = np.array([x_cam, y_cam, z_cam, 1.0])

 p_base = trans_mat.dot(p_cam)

 px, py, pz = float(p_base[0]), float(p_base[1]), float(p_base[2])

 except Exception as e:

 self.get_logger().warn(f"TF lookup failed: {e}")

 px, py, pz = x_cam, y_cam, z_cam # як fallback - залишаємо у

camera_frame

 # Додаємо в список точок

91

 obstacle_points.append((px, py, pz))

 # Формуємо Detection2D

 det = Detection2D()

 det.header = self.latest_rgb.header

 bbox = BoundingBox2D()

 bbox.center.x = float((x1 + x2)/2.0)

 bbox.center.y = float((y1 + y2)/2.0)

 bbox.size_x = float(x2 - x1)

 bbox.size_y = float(y2 - y1)

 det.bbox = bbox

 # тут можна додати results.meta (class, score) у det.results

 detections_msg.detections.append(det)

 # Публікуємо Detection2DArray

 if len(detections_msg.detections) > 0:

 self.pub_detections.publish(detections_msg)

 # Публікуємо PointCloud2 перешкод (якщо є)

 if len(obstacle_points) > 0:

 header = Header()

 header.stamp = self.get_clock().now().to_msg()

 header.frame_id = 'base_link'

 pc2 = point_cloud2.create_cloud_xyz32(header, obstacle_points)

 self.pub_pc.publish(pc2)

def main(args=None):

 rclpy.init(args=args)

 node = YoloToPointCloud()

 rclpy.spin(node)

 node.destroy_node()

 rclpy.shutdown()

92

Додаток В.

Фрагмент costmap_common_params.yaml:

obstacle_layer:

 observation_sources: perception_obstacles

 perception_obstacles: {data_type: PointCloud2, topic:

/perception/obstacle_points, marking: true, clearing: true, expected_update_rate:

10.0, observation_persistence: 0.5}

Launch-файл robot_system.launch.py
from launch import LaunchDescription

from launch_ros.actions import Node

def generate_launch_description():

 return LaunchDescription([

 # Камера (реальний драйвер RealSense або симуляція)

 Node(package='realsense2_camera', executable='realsense2_camera_node',

name='realsense', output='screen'),

 # SLAM (RTAB-Map)

 Node(package='rtabmap_ros', executable='rtabmap', name='rtabmap',

output='screen', parameters=[{'frame_id': 'base_link'}]),

 # YOLO → PointCloud2

 Node(package='my_robot_vision', executable='yolo_to_pointcloud',

name='yolo_pc', output='screen'),

 # Nav2 bringup (виконує map_server, controller_server, planner_server)

 Node(package='nav2_bringup', executable='nav2_bringup_launch.py',

name='nav2', output='screen'),

 # Ваш контролер/моторний драйвер читає /cmd_vel

 Node(package='robot_controller', executable='controller_node',

name='controller', output='screen'),

])

93

Додаток Д.

Коду вузла у Python:

import rclpy

from rclpy.node import Node

from sensor_msgs.msg import Image

from cv_bridge import CvBridge

import cv2

class PreprocessingNode(Node):

 def __init__(self):

 super().__init__('image_preprocessing_node')

 self.subscription = self.create_subscription(Image, '/camera/image_raw',

self.listener_callback, 10)

 self.publisher = self.create_publisher(Image, '/camera/image_processed',

10)

 self.bridge = CvBridge()

 def listener_callback(self, msg):

 frame = self.bridge.imgmsg_to_cv2(msg, "bgr8")

 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

 blurred = cv2.GaussianBlur(gray, (5, 5), 0)

 eq = cv2.equalizeHist(blurred)

 processed = self.bridge.cv2_to_imgmsg(eq, "mono8")

 self.publisher.publish(processed)

def main(args=None):

 rclpy.init(args=args)

 node = PreprocessingNode()

 rclpy.spin(node)

 node.destroy_node()

 rclpy.shutdown()

if __name__ == '__main__':

 main()

94

Додаток Е.

Ралізації ORB у Python / OpenCV:

import cv2

image = cv2.imread('frame.png', cv2.IMREAD_GRAYSCALE)

orb = cv2.ORB_create(nfeatures=1000)

keypoints, descriptors = orb.detectAndCompute(image, None)

output = cv2.drawKeypoints(image, keypoints, None, color=(0,255,0), flags=0)

cv2.imshow("ORB Features", output)

cv2.waitKey(0)

95

Додаток Є.

Фрагмент коду ROS2-публікації положення робота:
import rclpy

from rclpy.node import Node

from geometry_msgs.msg import PoseStamped

class PosePublisher(Node):

 def __init__(self):

 super().__init__('pose_publisher')

 self.pub = self.create_publisher(PoseStamped, '/robot_pose', 10)

 self.timer = self.create_timer(0.1, self.publish_pose)

 def publish_pose(self):

 pose = PoseStamped()

 pose.header.frame_id = "map"

 pose.pose.position.x = 1.2

 pose.pose.position.y = 0.8

 pose.pose.orientation.z = 0.1

 self.pub.publish(pose)

 self.get_logger().info("Pose updated: x=%.2f y=%.2f" %

(pose.pose.position.x, pose.pose.position.y))

rclpy.init()

node = PosePublisher()

rclpy.spin(node)

rclpy.shutdown()

96

Додаток Ж.

Код інтеграції SLAM у ROS2 (RTAB-Map)

<!-- visual_slam_launch.xml -->

<launch>

 <node pkg="rtabmap_ros" exec="rtabmap" name="rtabmap" output="screen">

 <param name="frame_id" value="base_link"/>

 <param name="subscribe_rgb" value="true"/>

 <param name="subscribe_depth" value="true"/>

 <param name="approx_sync" value="true"/>

 <remap from="rgb/image" to="/camera/color/image_raw"/>

 <remap from="depth/image" to="/camera/depth/image_raw"/>

 <remap from="rgb/camera_info" to="/camera/color/camera_info"/>

 </node>

</launch>

97

Додаток И.

ROS2 інтеграції планувальника (Nav2)
<!-- nav2_launch.xml -->

<launch>

 <include file="$(find nav2_bringup)/launch/navigation_launch.xml">

 <arg name="use_sim_time" value="false"/>

 <arg name="map" value="$(find my_robot)/maps/office.yaml"/>

 <arg name="params_file" value="$(find my_robot)/config/nav2_params.yaml"/>

 </include>

</launch>

Файл nav2_params.yaml містить налаштування:
planner_server:

 ros__parameters:

 planner_plugin: "GridBased"

 use_astar: true

 allow_unknown: true

controller_server:

 ros__parameters:

 controller_plugins: ["FollowPath"]

 FollowPath:

 plugin: "dwb_core::DWBLocalPlanner"

 min_vel_x: 0.0

 max_vel_x: 0.5

 acc_lim_x: 0.2

